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PREFACE

Gomptitational Fluid Dynamics (CFD) play an increasingSly important role ins ihe acrodynainic design of flight vehicles.
The main reasons for tais arc tlte rapid developments in computer hardware and solution algorithms in combination with the
increasing requirements (and potenili) for improving aerodynamic quality and redticingdesign cycle time and cost.

Tlie objective of the ocrodynamic design of flight vehicles can be described as to shape the external geometry of thle
various pat .s of a configuration in such a way that they will exhibit givens aerodynarnic charactcribtics whilesatisfying a larg3
number of geometric and other, for instance, structural constraints. C-FD can serve this purpose in different ways. In a broatd

!-ea.Lwtwo categories of aeridynamic design methodnlogy utilizing CFD may be distinguished.

* One category ulilizz anlysis type CFD methods in an lieu risticempiiical cut-and-try type of process. In this kind of
process: the role of ('FL is to prcflct the aetodynamic character istics ofa onfiguration (or part thereof) of given geonmetry
provided by the designer.

- -- The second category of CFD-based methods addresses the problemlo odesign for given aerodynamic characteristics in a
more direci sense. Exaniples are "inverse" methods which providec the detailed geometry required to generate a given
pressure di~tribtstion and methods utilizing numical optinr *2aton technique-s to obtain the geoimetry thait iillmizes, subject
to constrain,,:. a given aerodynamic objective function such as drag, load distribution, etc.

It can be argued that this second category of methods in particu!er offers unique possibilities of wvhich there is no
equivalent in expel imental aerodynamics. It is, therefore, perhaps somewhat surprising that the design typeof CFD methods
appear to receive relatively little attention as compared to the analyses type of methods.

1. is thi.9 observation that led the- Fluid-Dynamics Panel~o organize a Specialist Mocttrng on the subject of
"Computitional Methouds for AerodynamnicDesign (Iniverse) and Optimization". Tis volume collects the papers presented
? t the Specialists Meeting mid t1;e concleding Round-Table Discussion.

For the sake of statistics it is mentioned that of the 33 papers offered to the Program Committee 23, (includinga~ivited
papers) could be accommodated within the time frame available.

These 23 papers wereordered into 4 sessions:

- Invited and Survey Pipers (3 papers)
- Inverse Methods - A ioils and Wini (5 papers)
- Inverse Methods - Tu rbomnach inecry (6 papers)
- Numerical Optimization-T'cchiniques; (9 papers)

In alphabetical order of country of irigin there svas/were
I paper from Belgium
3 papt.-s from~ France
5 paer fromn Germany
3 papers from Italy
3 papers froim The Netherlands
I paper-fiom Portugal
I paper from Turkey
I paper from UK
5 papers from USA

It is finally remarked that the Technical Evaluation Report on the-meeting is available as AOARD Advisory Report
No.267.



PREFACE

Les Calcul en Dynamique des Fluides (CDF) jouc cn r~le de plus en plus important dans la conception a~rodynazniquc
des vehicules a~riens. Les pnincipalcs raisons pour ccci sont, les progri~s rapides qui ont 6t r~aliss; dans Ic domaiine do
mnateniel informatique et des algontlimes% do ri~solution, ainsi quo Ia dernande (et Ic potentiel) croissants cn cc qui conccrc
l'am6lioration de Ia qualits6 ai~rodynainique et la rs~duction du cofit et dc la duri~e du cycle d'6tudc.

La conception asdrodynamique des v~liicules a~riens A pour objectif de former la g~om~trie externe de., diff~rents
6ldments dMine configuration dornde de telle mani'e quils pr~sentent oin certain nombre de caract~ristiques
acrodYnamiqucs donnees, tout en rcspcctant on nonsbrc important do contraintcs gdomihriqucs et autres, parmi lesqoelles
dc contraintes structurclles. Le CDP pout servir As cctte fin, ct de diffdrcntes fagons. Dc mani~re gi~issrale, on distingue deux
categories de m6thodologics pour la conception airodynamique faisant appel au CDF,

La prenicz uilse desmnsthodes analytiques dans on proc~d6 lieuristiqoc/einpiriquc do type i experimentation
systemnatique. Le rble do CDF dans cc type de proc~d6 esqt de privair Ids caractdristiques; adrodynamiques de tout ou partic
d'une configuration d'une g~onstrie donnde, fournie. par Ic conccpteur.

La deuxiome catdgorie densdthode permet d'abordcr d'unc fa~on plus directe Ic problme de la conception en fonction
decaractenstiques aerodynamiques dor :des.Parmi les exemples dc ces m~thodes, on peut citer les m6thodes invcrscs qui
downent la geom etric detailkec n~cessaire pour une distribution de pression donn~e, ct Ics msthodes qui font appel I des
techniques d'optimzsation numdnques, afin d'obtenir une g~om~trie, laquelle, ,ous n~serve de ccrtaines contraintes, pennet
de minimaliser one fonction distincte a~rodynamique donnde, telle que la trai6, la repartition des charges etc.

On petit dire que cette deuxii~me catt~goric de m~thodes en particulier, offre des possibilit~s oniques, qoi ne troovent
aucon equivalent dins; Ic domaine dei'arodynamique, cxpdrimentale. 11 est done, qucique pco surprenant que les types de
methode CDF pour la conception stiscitent relativesnent peu Xintdrk en comparaison des types de mdthodc pour I'analysc

Cette constation a amend~ le Panel de la IDynamique des Fluides is organiser one r~union de sps~cialistes sur Ic thi~mc de
Ids methodes de calcul poor Ia wrnception acrodynamique. (m6thtides inverses) Ct Ioptimisation". Le pnrseit volume est on

recucil des communications pr~sen, es lors de Ia reunion de sp~cialistes et de la table ronde tenoc en fin de s~ance.

Par 4gard pour les statistiques, nous tenons as signaler que sur les 33 communications proposties au cosniit6 do
programmne, 23 (dont celles r6alisces it la demande expresse do consit6) ont pu 6tre prescntdes dans Ic temps imparti.

Ces 23 communications ant 6t present~es en 4 sc~ances:

Communications pr~sent~es sur invitation et communications pr~sentant N'tat de l'art (3-communications)
MWthodeq inverses - Profits adrodymiamiques et voilures (S communications)
Mdthodes inverses -- Ids turbomnachines (6 communications)
Techniques d'optimisation numdriques (9 communications)

La liste des communications par pays d'origine et par ordre alplsabdtique s'6tablit comnme suit:

I communication de Ia Belgique
3 communications de la France
5 communications de l'Allemagne F7ddrale
3 communications de Iltal
3 commsunications do Pays Bas
I conmmunication do Portugal
1 communication deIa Turquie
1 coinmunication do Royaume Uni
5 communications des Etats Unis

En conclusion, it est is noter que to rapport d'dvaiuation tci~hnique poor cette rdoisior. est disponible sous Ia forme do
* rapport consultatif de I'AGARD No.267.
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PROGRESS IN INVERSE DESIGN AND OPTIMIZATION IN AERODYNAMICS

by

HehlnulSobieky

DLR Institute for Theoretical Fluid Mcchanics
Bunrhenstrass s

D-3400 G36ttingcn
Federal Republic of Germany

Summary
~Aerodynamic design has been developed to an advanced state of the a rt: Inverse methods allow for strong

control of aerodynamic airfoil or wing performance so that opllmizatio' rategles are no longer beyond

practical use and knowledge bases can be established forthe Implen .. ,ration in "aerodynamic expert
systems', This paper reviews some recent steps into this direction.

Introduction

Twenty years ago-an AGARD conference publication' marked-the date of renewed Interest In an important
field of fluid-mechanics: Transonic flow, Among other progress, one of the reasons was that Important
results were presented for systematically designed airfoil flows-without-a recomprosslon shock-at design
conditions. These have been found by Nleuwland, and progress also In wind tunnel experiments now
allowed tho conclusion that-such flows actually would be of practical interest, Systematic use was made
by the fact that compressible gasdynamlcs allows for a linearization of the basic model equation if the roles
of Independent (2D space coordinates x,y) and dependent variables (velocity components u,v) are
switched. Every approach to gain Insight In particular flow problems by this change of roles was called a
use of-'the Hodograph Method". In contrast to the linear model equations, an airfoil boundary value
problem In the hodograph plane (uv) Is nonlinear and therefore did not easily allow for the construction
of practical airfoil flows. Results were termed as obtained "indirectly", because the classical inverse"
problem - to prescribe the velocity or pressure distribution and-obtain a'transonlc airfoil shape - was still
not solved twenty years ago.

During the seventies and early eighties, knowledge of basic analytical models, as well as the resulling
indirect methods and the availability of larger computers allowed for-the development of a number of
computer programs to design shock-free transonic alrfoils In addition, faster flow analysis-methods with
viscous effects already taken into account, were used for the direct design approach by-successive shape
variations. Design methods, termed Indirect and "dliect" became available but finally also the step from
indirect to "inverse" techniques completed methodology as a toolbox available today for the aerodynamic
designer*.

This present review Is not quite restricled to transonic flows but, because of the author's interest, mainly
adresslng this speed regime.

It starts with the observation that today ihe hodograph transformation hs some renewed value for phe-
nomena understanding: relined mathematical modelling Is necessary to define a knowledge base for future
design and optimization concepts. A few of the successful developments in the field of inverse airfoil and
wing design methods published- during the past 5 years will be mentioned.

Design methods aresullable for optlmizatlon-strategy development, as well as the availability of inexpen-
sive flow analysis codes, to be run-many times on carefully varied geometrical boundary conditions.
Geometry genbration is a large toplcon'its own so if will be mentioned here only as a basic component for
optimization.

Aside from-the world of supercomputing numerics and facilities we witness the rapid progress in modern
workstation computer development. New posslbllitles arise to mpke use of accumulated aerodynamic
experience, Input for "experl'deslgn systems' within the technology of artificial Intelligenco,

Value of the Hodograph TransformatIon

Mapped Phenomena

Early transonlctlow research was -successfully exploitlngthm; fact-that two-dimensional compressible flow
modelling yields linear equations for velocity potential or stream function. A variety of attempts to describe
-flow singularities was-parly successful by solving complex problems andparly not so successful because
some approaches to arrive at solutions rather confused the aerodynamlcist than slmplified the task to
delign practically useful flow~examples, Today we have renewed Interest-In hodograph solutions for dif-
ferent reasons. Rapid desk-top computers-with interactive graphics allow-fc" a direct, evaluation, easier
underlanding-and appPcatlon of such solutions. One complex-of questions Is related to the-nature and
sensitivity of supercrillcal airfoil flows without-cr with tolerably weak recompression-shocks. Model soi-
utlons ofIaoslmpla,.nalytic structure describe supersonic bubbles embedded In-subsonic flows. These well
underslood flow components and -thelr-mappings4n -the hodograph plane- mav-draw-ennflnu infcrc..
bhcheseheo bc-us"d'tG ,upper{ curistic modeis to be-Implemented In global design and optlm' za-
Iron goals.

One example in our task to use the hodograph of-supercritical airfoil flow fields-for practical -design mod-
IfIcat otloooli, Fig, 1-shows the result of an-airfoil flow analysis, mapped to hodograph varlableis. Here we
use the- PrandllMoyer- function (depending only on the local-Macht Number)-and the flowangle. Earlier



studies In this special hodograph allowed for a rheoclectric flow analogy ( "'-Rheograph ) " today we use
this knowledge base to develop simplified models for an expert system, The figure shows the flow In the
physical and In the rheograph plane. The role of the characteristics within the supersonic field Is crucial for
sensitivity to of.desgn perturbations.

Analytical particular solutions-valid In the near-sonic domain-help to clarify the appearance of shocks In
slightly peiturbed shock-itre-flows. Test cases for numerical methods are easily defined-by exact local
solutions$. Fig. 2 shows a model for a cusped Indentation to the sonic line of a local supercritlcal field
wetting a, smoothly curved airfoil contour. Such Indentations are observed In experiments and refined
analysis calculations of airfoil flows with very flat- supersonic bubbles, If the lift or the Mach number Is
slightly-below design conditions (Fig. 3b).

Laminar flow control (LFC) technology research In the transonic regime has stresseo- the -importance of

very refined knowledge of local (Inviscid) flow structure because of Its Influence on the appearance of vis-
cous instabililies. In W. Pfennlnger's work' the role of the hodograph Is outlned as a tool for a knowledge
base about laminar flow control. The quality of local supersonic flow bubble shapes is found crucial for

design pressure (Fig. 3a) distribution as well as for sensitivity to off design perturbations (Fig. 3b):

'At the design point with transonic potential flow the supersonic bubble should be regular without concave
Indentations, which precipitate off-design shock formation. For this purpose, the supersonic zone, where
the surface-curvature- increases continuously, must decelerate progressively faster to-sonic velocity, fol-
lowed by a steep subsonic rear pressure rise with suction.

The upper surface nose contour Is characteristic to airfoils with a far upstream pressure minimum; it
decisively Influences the entire flow of the upper surface supersonic zone. The on-design hodograph
streamline of the upper suriace- decelerates continuously over a wide range of flow Inclination angles ( i.e.,
upper surface slope angles) from the pressure minimum to the flat rooftop'.

It Is exactly-such detailed knowledge about the phenomena crucial for airfoil performance which should
be made available by-new techniques to evaluate model solutions, mappings and graphic display.

Fictitious-Gas Concept: a Link between Direct and Inverse Design Methods

A detailed knowledge of local flow phenomena is undoubtedly the best prerequisite for successful config-
uration design. Hodog,'aph mappings have laid ground for the nearly - direct 'Fictitious Gas* design
concept7 , which has rcsulted In a number of eflicient computer codes to redesign given 2D or 30 config-
urations to be shock- free".

Aerodynamicists have also developed their own applications of the concept, which can be implemented in
nearly-every analysis code. However, it takes creativity and the courage for non - standard approaches to
make full use of the idea which still seems to have the potential to help gaining a better understanding of
unresolved mixed type flow phenomena. Starting-with shock - free redesigns to finally arrive at aerodyna-
mically optimized 3D configurations seems both relatively easy and economical, see some examples in
review' .

Indirect Design Methods

Because of-rapid progress In direct computational fluid dynamics within the past years there are only-very
few new methods for solvingthe hodograph equations with boundary conditions resulting from an indirect
design approach. One method seems interesting from a numerical point of view:

The work of C. Mavriplis" Is an attempt at combining the'hodograph formulation and spectral methods to

create an efficient analytical/numerical- method for designing- two-dimensional transonic flow. Spectral
methods were chosen for their efficiency and -accuracy. They are~an extension of the classical separation
of variable methods, capable of apprcxhntling smooth solutions with -exponential convergence. An Itera-

tive numerical procedure-Involving a Chebyshev-Fourier pseudo-spectral method- Is constructed-for the

solution of two-dlmensional-shockloss-transonic potential flow In the hodograph plane.

InverseDesign of Airfoil and Wings

The classical-Inverse problem of aerodynamics Is posed by specifying the pressure-distribution around an
airfoil or wing and determining the geometry of this-airfoil or wing that-realizes this pressure distribution

as solution. For Incompressible -flow-past -airfoils -this classical- problem was solved by Lighthili". Com-
pressible flows, especially~in the mixed-subsonic/supersonlc regime, did not-allow for reasonably precise
solutions until-perhaps a decade ago,

Today, with the help of faster a ,d larger computers, Iterative procedures allow for the solution of nonlinear
model equations as well-as nonllnevir boundary value problems. The latter are a crucial-part-of inverse
problems and-results at first were obtained for potential flow models. Volpe and-Menlk

!2 have developed
amethod-for-arfolls-in flow:-with Mach numbers-up to-the-transonic-regime, Interesting ihsight into the
structure of transonic Ilows can'be grlned with results from this method:

SP-0fl ati nn-of-shocIcfee -prssure dlstributionsonairfolis In too high Mach numbers results In flows
where-Ilndeed the- surface pressure almtribufiun i shC- frcc, bLeefrnng~recompresslan shock-we her-
minates-a-part-ofthe supersonic bubble wilhin the flowlield (Fig.4), resulting in strong wavedrar id-pre-
sumably a very unstable behavior of this flow-near the design condition. We may asY how to a ,id such
unwelcome results without having to Investigate the flow field above the airfoil contcjr and checking the
Integrated airfoil drag. A simple answer re.-ulls from knowledge of-the hodograph-m ipplng: The undesir-
able airfoil property of-such a 'hangingshock' Is compatible only with-a part-of ihe-airfoil surfacebeing
concave In the supersonic region. This faict-allows to Impose an additional constrain-on surface curvature.



Other inverse potential flow methods are proposed by Daripa" and for multiolement airfoils in Incompros-
slble flow by Siladic and Carey".

M. Drela'5 developed a now design/analysis method for airfoils and cascades. It solves the Euler equations
and allows for viscous Interaction by a coupling with a boundary layer method.

S. Takanashl" uses the-transonic Integral equation to-develop on Iterative design proceduresutilizing vari-
ous reliable analysis codes.

Because of the attractivily of ihese methods, they are described here In more detail, reproducing some
convincing results for airfoils and wings designed.

M. Drela's Design-Method using the Euler Equations

This design/analysls- method Is based on a novel discretizallorn and solution technique for the steady Euier
equations. The discretlzatlon Is based-on an Intrinsic grid In which one set of coordinate lines corresponds
to streamlines and hence there Is no convection across the corresponding faces of the conservation cells,
This type-of coordinate system Is very attractive for the steady-state Euler equations. Both the continuity
and energy equations are replaced by the simple conditions of constant mass flux and stagnation enthalpy
In each streamtube, thus reducing the number of unknowns per grid-node from four to two. With conven-
tional finite-volume discretizatioh,all four equations and four unknowns per grid node must be retained In
general, and only the energy- equatlon can be eliminated In the special case of constant -upstream total
enthalpy.

The key feature of the present discretization scheme which permits Inverse solutlonsto be performed Is
that since the streamline grid evolves as part of the-solution, the airfoil -.hape (which Is defined by two
particular streamlines) can evolve as well. In the discrete equations, It Is as easy to specify that the surface
pressure-match some given distribution as It Is to specify that the surface streamlines match the airfoil
shape.

'he boundary-conditions for the analysis code deal with the direct problem. A body geometry was pro.
scribed, and the flow field and surface pressures were a result ofa calculation. An alternative to this-pro-
cedure is the Inverse problem, where surface-pressures are prescibed and geometry Is-calculated as a
result. A- straightforward Implementation of this-Idea is to-replace the-fixed-wall boundary condition with
the condition that the wall pressure at each-grid node on thebody surface equal-some specified value.

In addition to the full-inverse formulation, the program Implementing- the aigorlthms -also handles the
mixed-Inverse formulation, where the-pressure is prescribed on part of airfoil, and the geometry Is pre-
scribed on-the rest, This-can In.fact be considered a generalization of both the-dlrect and=full-inVerse for-
mulations, since either-the prescribed-pressurecor the prescribed-geometry pails can In -principle -encom-
pass the whole airfoil, The ability to mix the two formulations In arbitrary- proportions Is an extremely useful
feature-which gives-the -designer much more overall control over both the aerodynamic and geometric
properties of the airfoil than Is present with eltherformulation alone.

Some-test cases Involve the RAE 2822-supercritlcal airfoil, They are rompared with experiment to demon-
strate the accuracy of the turbulent Integral boundary'layer formulation for transonic flow with and without
shock-induced separation. The design case demonstrates the-redeslgn-of the suction side of the 2822 air-
foil using the-mlxed-lnverse design-option, see-Fig. 5.. This-redesign eliminates-wave drag and yields a
21%-predicted drag reduction from the original 2822 drag.

S. Takanashl's Design Method using tle Transonic integral Equation

A practical- dosign method Is-presented for three-dimensional transonic-wings with-prescribed pressure
distributions. The method Is-bdsed'on an-Iterative "residual-correction' concept. The residual, defined as
the difference between the computed and the-prescribed pressure distributions at each Iteration step, Is
determined by the use of an-existing direct analysis code for a transonic wing with or without the body.
The wing-geometry.correctlorto-comr.enate for the residual-can-be approximately obtained from the
Inverse solution code developed In the present study. The Inverse (correction) problem ls;mathematically
redticed-to atirichlet-boundary value-problem that Is solved here by-the aid'of the transonic-Integral
equation method.

The-acivanlage of the Iterative residual-correction -procedure approach Is that only-minimal effort-in devel-
oping the geomelry- correction code is needed to~compensnte-for thepressure residual, while an analysis
code Is retained In-is original form and-can be treated sr ,lely as a 'back box-.,As a result,-the analysis
code-can be easily replaced-whenever a more advancedcde becomes available.

The'basic procedure of Iteration for the wing design Is described in the followlng. 1) the flowfleld-Is solved
foran inatialwing by a direct anal-ysis coda that provides the Initle! pi~ssure disributlon; and 2) the Inverse
correction-corresponding-to the-piessure difference-between the'actually computed pressure-at-the first
step and a-specified pressure distribution. As long as fhe.highe' -order bi-msint. e transonic-Integral
equation ,re- small, the -calculated geometry-difference can provide a good-approximation of.the exa~t-
amount-of correction fortha Init al-wimn gemelry Thum, a=ncw .t-ng gaoi ot:iy is oblaindinat, in turn; cais
be used-as the second-set of Input data to the analysis code. The same processis repeated until conver-
gence Iszachieved In-the sense thatthe calculated pressure distribution-agres-wlli-he prescribed one
wlth!n a specified-amount of tolerance.

This- procedure-requhes neither restrictions on the foenu!Mlon nor a numericalsQlutlion schemiee for the
analysis code. The-only reqlrement Is that the flow solver-calculates the pressure distribution on the cor-
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-rected wing surface, since the design code Is completely Independent of the analysis code. Therefore, any
analysis code for a three-dimensional transonic wing with or without a body can be employed using the
procedure. FLO-22 was at first used as a direct code for the nonconservative infinite difference equations
derived from the three.dimensional transonic full potential equations.

A transonic swept-wing design for a transport airplane was attempted. The target pressure distribution
chosen here Is characterized -by Its particular Isobar pattern. That Is, the specified chordwise pressure
distributions are the same at any span station between the wing root and tip, so that the straight line Isobar
pattern Is realized over the entire wing surface (Fig. 6).
The design method recently has been coupled also with a Navier-Stokes code" . Results for viscous airfoil

design have been obtained using the-2D analysis code NiSFOIL; an example is shown-in Fig. 7.

Aerodynamic Optimization

This paper deals, In-the previous part, with Inverse design procedures. Hodograph models and Indirect
design ccncepts are considered-a theoretlca background and basic toolbox for development of practical
Inverse- methods. The ultimate goal of either approach Is the ability to find shapes which perform 'opti-
mally' In-acertain range-of missions. An-optimum may include many abilities beyond aerodynamic per-
formance, here.we constrain the large amount of practically important parameters to the group within the
disclpine 'aerodynamics* but we do this knowing that aerodynamic design does not play the most Impor-
tant'role In global design/optimization of a new airplane projuct. Optimization, both just aerodyna,nic or in
other disciplines like structures, require a suitable parameterization of the-shapes to be designed. It is
therefore the basic discipline of geometry which turns out to be a key tool for optimization, utilizing direct
or Inverse design melhods.

Using aerodynamic knowledge for geometry parameterization

-Learning from test cases evolving from hodograph models, inverse and direct design studies, we develop
a knowledge base about the regions of high aerodynamic sensitivity on configuration surfaces. This is true
especially In the transonic regime, here the surfaces wetted by supersonic flow are most important. Mixed
direct-Inverse operation like the one In Drela's Euler code mentioned above are therfore of high practical
value. Such an approach may Implement-the best features of subsonic aerodynamics on the main portion
of the whole configuratlon, but allow for modifications within the supersonic domain. Initial geometries as
an Input to design/optimization cycles should therefore consist of-accurately, i.e. analytically defined sur-
faces, but allowing for-local shape -deformations analog to elastic variable geometry devices on actual
configurations.

Based on this concept the author's geometry-generator code E88"€ , has-been created as a tool for design
aerodynamics. Input wing sections to be blended arbitrarily along wing span-allow an a-priori selection of
airfoils known to be suitable for-the desired-range of operation. Spline support. of these-baslc sections
may be-situateddensb y where the contour-is fixed, but only-a few support points are located within the
contour portion which Is allowed to-vary. Fig. 8 shows such sections: the single supports on the upper
surface are- to-be moved -vertically like jacks of-a flexible wall In a wind tunnel. Use of a reliable analysis
code to determine aerodynamic response to a-support- location change, the definition of an objective
function to be minimized and an optimizer complete the software for aerodynamic optimization.

Cosentino-and Hoist" have used a version of the abovemeniloned -geometry generator to-be coupled with
a potential flow wing analysis code, wing optimization was performed using lift-ovor-drag ratio as objective
function. Fig. 8 -shows three generatlng sections at wing root, break and tip-with three movable splipe
supports each. This gives nine parameters in total to be varied in a gradient method optimization strategy.
Here the fact Is stressed that-aerodynamic knowledge allows-us to create shapes with many fixed but only
a few, but crucially -important, movable parameters, located in areas where the flow is-influenced most
effectively. Fig. 8 shows a selecte-epan station-with pressure distribution before and after the optiniza-
lion process.

The number of parameters for shape variation can be further reduced If geometric changes-can be
expressed by suitable functions cantrolled by fewer parameters-than-the number of moveable spline sup
ports. We drive-the use of aerodynamic -knowledge further if we ecognize results from-the fictitious-gas
design procedure': In!ilal geometries In a fictitious flow yield the sonic bubble and the domain-to be
modified In a secord step of the- (non~ictittous)'calculation. The-modification Is a difference bump within
this sonic bubb;o, its local amplitude being proportional to the local bubble height, as can-be verified-by
simple continuity considerations. Modelling-a bump function between the calculated-sonic points-on wlag
sections and calibrating Its amplitude using the extent of the bubble results In a one-otep method to modify
a given wing to become a nearly shock-free one. Since we have learned that reducing shocks on otherwise
already acceptable designs may bring tie configuration very close to-an optimum aerodynamic efficiency,
this method" seems attractive for-arbitrary three-dimensional conliguralions, utilizing a-liclitious gas ver-
sion of an analysis code capable to analyzezsuch configurations.

The Use of-Known Flow-Fields for Configuration Optimizallon

The main problem of aerodynamic oplimization - compared to optimlzalton In otier-dibcplines - Is-the
ro-v!G -ot -aJ--a,, ' ,jctaUnction, 11'Ae -crodynamic :;Vlclercy or 'ha GdlfC.rncas'to a lar

get pressure distribution. Integration of the whole flow field at each iterationusuallycannot be avoided but
there are applications to use selected pa:.s of-just one flow field, either known as a basic flow element-or
computed just once for all-following puiposbs



t-.s

Revived Interest In hypersonic aerodynamics asks for optimum performance lifting bod:es In this speed
regime, even with many details of flow physics still neglected or Just crudely modelled. The concept ot
supersonic waveridors" dates back thirty years ago, when the application of flow elements with oblique
shocks and sharp edged delta wings allowed for a complete description of wing geometry compatible with
a known- supersonic field plus the bow shock. These examples were and still are valuable test cases forexperiments In supersonic and hypersonic wind tunnels. In addition today, we may develop new numerical

algorithms to evaluate more sophisticated model generation, like the Euler and time-averaged Navier
Stokes equations, using examples with known (Inviscid) flow and shocks.

Configuraton optimization also finds a field of suitable case studies because we may evaluate lift and drag,
possibly utilizing boundary'!yer methods and however little existing experience in hypersonic flow tran-

stilon, Bowcutt at. at" dse conical flow fieds to be cut out by a body leading edge and determining the
lower body surface rroducing lift. The upper surface is cylindrical in undisturbed flow or produces addi-
tional lift by utllIzlnf, an also known Prandll-Meyer expansion flow. Parametric variation of the leading edge
shape allows for a fast determination of the aerodynamic characteristics Including friction drag from a
boundary layer meth, d. Corda and Anderson"' extend this concept by using non-conical axisymetric flows
for-body generation, again lust the leading edge Intersecting -with the shock determines the-body and the
flow. Leading edge shape parameters are varied and a simplex method Is used to optimize lift over drag
(Fig. 9). Resulting body shapes, for the chosen leading edges, may be of rather academic value only, (Fig,
10), but they provide an excellent data base for the development of more-general supersonic and hyper-
sonic design and optimization strategies, as well as - In combination with geometry and CFD grid genera-
tors - for an analysis of flows past more applied configurations.

Evolution Theory for Aerodynamic Optimization

The purpose ot the two previous subsections was to demonstrate the goal of aerodynamic knowledge, to
reduce the number of design parameters, by using classes of shapes or flow fields, In cases where this
knowledge base is still Insufficient, the number of design variables may have to be * Igh at least for a first
orientation.

As the number of design variables Increases, or as variables become coupled, the efilciency-of a gradient
search method Is reduced. In addition, gradient search methods are quite complex to Implement.
Misegades 5 suggested the use of evolution theory as an-alfternative approach. Evolution theory Is a very
simple method that can be used with any number of variables, which do not-have-to be completely Inde-
pendent of one another, In addition, evolution theory Is Insensitive to-step functions in the processing
function and-to local minima and maxima.

Gregg and Misegades" presented a wing optimization method based on evolution theory and making use
of multitasking, one of the options to use multiple processors for a single lot, executed on a Cray XMP
computer with multiple CPUs. While total CPU time is not decreased by multitasking, elapsed time can be
substantially reduced to Improve turnaround time.

Toward Aerodynamic Expert Design Systems

Aerodynamic engineers are accumulating expertise In the field of CFD, design aerodynamics and in many
practical fields related to and resulting from their work, they become experts. Reviewing progress in the
field of aerodynamic design and optimization, one cannot oversee-recent developments in the field of
Artificial Intelligence (Al), i.e. In the study of-how to make computers perform tasks that currently have to
be done, or are better done, by human beings. An approach-to be successful In this directio||, Is the
development of software formulated with concepts of Expert Systems-(ES).

The coupling-of Al/ES with-CFD was generally outlined and -demonstrated for aerodynamlc turbocompo-
nent design-by S.S. Tong 2 , 

This new-field has begun to spark development of now-programming lan-
guages, because a problem still obstructing applications of Al to CFD and aerodynamics is the lack of
powerful, portable, fully supported and well documented developmental software. With the current world-
w' e Interest In Al, It Is expected that much more commercial-Al related software will soon be avalabic.

However, It Is evident, that an Expert-Design System will be just-as good astlhe knowledge bases used to
build the system. Necessity to extract knowledge bases from experts seems difficult because of obvious
human reasons. A new Interdisciplinary world of Aerospace Sciences and Computer Science-with many
open problems but also-exciting possibilities opens so-that it Is certainly not unrealistic to-expect progress
In the development of aerodynamic Expert Design Systems-In the nerf'rlure.

Conclusion

This article revlews progress In a field of design aerodynamics, Resu'ts to model fluid dynamic phenomena
are used to lllus.rate the value of hodograph mappings for a better understanding of flow structure.
Numerical methods for Inverse airfoil and wing design are available now to give viscous flow results up to
high accuracy. Aerodynamic optilmzatlon should take advantage from a refined understandlng of flow
phenomena' the number of design parameters to vary surfaces can so be reduced to arrive at faster opti-
mization procedures. Finally, the new-lrection of coupling Artifical Intelligence wih Aerodynamic Design
may use much of the recent progress In systematic-design and optimization developments.
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Fig. 1: Supercritical airfoil at optimum aerodynamic efficiency,
Euler code-plus viscous analysis CRef. 15),(a).
Iso-Mach lines-and selected flow section (b).
Hodograph mapping (Ref. 4) of selected flow section (c).
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Fig. 2: Breakdown of shock-free supercritical flow
wtiga smoothily curved Nvall:smlaiy;

subsonic flow (with Iso-Machlines) and
supersonic flow-(with characteristics drawn)
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Fig. 3: Laminar Flowv Control Airfoil-flow (Ref. 6):
Design conditions (a): Mach =0.783,-c = 0.522.
Off- design cond. (b):zMach = 0.772, c = 0.493.
Sonic lines, Supersonic hodograph -mapping.

Figy. 4; Quiaiity-of transonic fib v field-around/
an. airfoil with- shock-free surface pressure ,.'-r
but a strong shock in -the flow field. 7
Siupersonic'expansion' characteristics, /

Sonic .nd subsonic Iso-Macblines.
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Fig, 7: Viscous Inverse Design-of a-shock-free. airfoil (Ref. 17):
Transonic integral equation- plus 2D-Navier Stokes code.
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AEROFOIL DESIGN TECHNIQUES

A J Bocci t
Aircraft Research Association Limited
Manton Lane, Bedford, MK41 7PF, England

SUM4ARY

Various aerofoil design exercises carried out at ARA over the years are described, concentrating on the
part played by the inverse methods. The design of an aerofoil suitable for the wing of a combat aircraft
.esearch model was successful in meeting a number of performance requirements but the inverse supercritical
method used gave an unsatisfactory intermediate profile and off-(esign calculations were necessary to
resolve the problem. In a research exercise involving the design of an aerofoil suitable for the wing of a

transport aircraft to take advantage of full-scale Reynolds number, the inverse supercritical method used
produced changes to the geometry in an opposite sense to those finally required. It is suggested that the
difficulties with the inverse supercritical methods arose because appropriate design target pressures were
not known and because viscous effects were not included in the methods. Subsequent designs of laminar flow
aerofoils and high-speed propeller blade aerofoils are described. For these cases, a technique was used
involving a subcritical method, with progressive adjustment of target pressures until a geometry arose with
suitable flow development according to a viscous supercritical method, with little use of supercritical
inverse methods.

1 INTRODUCTION

A fair amount of experience in aerofoil design for various applications has been gained at ARA over the
years. The applications have included combat aircraft wings, transport aircraft wings with either largely
turbulent flow or extensive regions of laminar flow, and propeller blades. Usually, the work has consisted
of design research exercises aimed at advancing the state of the art but the work has sometimes had direct
practical application, notably in the case of aerofoils for propeller blades. 7te more academic
investigations have focused on a primary design point but off-design performance and practical constraints
have been taken into account in the more applied investigations. The flows of interest have almost
invariably included supercritical regions and shuck waves, particularly at the primary design point; these
have a major influence on the aerofoil performance. This paper will review various aerofoil design
exercises carried out at ARA and comment on the techniques used.

Up until around 1970 it was customary in the UK to carry out aerofoil design work using subcritical methods
and then to investigate the performance of the aerofoil in wind tunnel tests. Inverse subcritical methods
were available for the design work, giving the aerofoil geometry for a prescribed flow- distribution. With
the advent of 'supercritical' aerofoils it was necessary to develop greater understanding of the
relationship between surface geometry and supercritical flow development, the relationship differing from
that in subcritical flow conditions.

The approach adopted in the UK to designing the early supercritical aerofoils was to combine such
understanding with an assessment of the likely supercritical flow development implied by the subcritical
methods. Elsewhere such aerofoils were developed using supercritical inverse methods for shock-free flows
(eg Refs 1,2) although the methods were very difficult to use. Also, supercritical aerofoils of the type
proposed by R T Whitcomb-were developed by, presumably, empirically modifying the geometry on the basis of
experimental evidence;- mathematical expressions for the profiles of such aerofoils are given in Ref 3.

In recent years, methods for calculating viscous supercritical flows about aerofoils have been developed
and are in routine ust. The methods are sufficiently accurate that it is now no longer always considered
essential to confirm the performance of the aerofoil by carrying out wind tunnel tests. The majority of
such methods involve analysis of the flow for a given geometry but inverse versions of some of the methods
have been developed. When the latter became available it was hoped that a more flexible approach to
supercritical aerofoil design would be possible. However, experience at ARA with two Inverse supercritical
methods showed up fundamental problems in their use. These were not necessarily a consequence of
deficiencies in the methods themselves but, rather, of uncertainties as to what pressures should be
prescribed to correspond to an achievable geometry in the supercritical region and result in an aerofoil
with the required viscous flow development and overall performance. As a result of such experience, a
relatively conservative design approach-has been adopted at ARA, with less emphasis on the use of inverse
supercritlcal methods.

In this paper, two aerofoil design exercises will be considered which illustrate the problems which arose
in using the inverse supercritical methods. These exercises involved the design of a combat wing aerofoil
and an assessment of the performance improvement which could be expected from a transport wing aerofoil
designed for full-scale Reynolds number. In subsequent sections, examples of more recent aerofoils
designed for laminar flow wings and the blades of advanced propellers will be described more briefly, with
an indication of the techniques used,

, .,m use. irl the val iuuw ati ufuil designi exercises considered here were taken from the following.

(a) Inviscid subcritical Weber theory (analysis and inverse), Ref 4. In this method, solutions for
thickness aid camber are linearly superimposed and only aerofoils with sharp trailing edges can be
dealt with.

(b) IDES2D', an inviscid small perturbation (TSP) method (analysis and inverse), Ref 5. This method fas
developed at ARA. The inverse capability applies aft of a fixed leading edge region, with a regular
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updating of the surface geometry during the calculat in iteratious A normal velocity related to the
prescribed tangential velocity by the vorticity iquation and th s define the surface slope and,
hence, the profile.

(c) TSPVISC, a viscous transonic small perturbation (TSP) method (an.' sis), Ref 6. This method was
developed at the-RAE; the invlscid component is believed to be a slight improvement on DES2D.

(d) G+K, the Sauer, Garabedian and Kern inviscid supercritlcal method (analysis), Ref 2.

(e) The Traner design method, Ref 7, as programmed at ARA (analysis and inver'e). A G + K analysis
solution is coupled to an inverse solution with Dirichlet bourdary-conditions on the aerofoil surface,
in an iterative ?rocess, to provide a design version of G + K. The detaileo velocity distribution
around the leading edge must be prescribed and there is an option of specifying a fixed trailing edge
thickness.

f) VGK a viscous coupled version of G + K (analysis), Ref 8.

(g) Jameson an inviscid method capable of providing solutions for cases with both subsonic and supersonic
free streams (analysis), Ref 9.

Also some results are shown which were obtained using,

(h) BVGK, a development of VGK which Includes various second order viscous -effects and provides a more
accurate solution (analysis), Ref 10. This method became available after the design exercises
considered here were complete.

The Weber subcritical method provides approximate solutions to the Incompressible potential flow equation,
wita appropriate compressibility corrections included. The supercritical methods provide solutions to the
compressible potential flow equation, by finite difference techniques involving field grids. The inverse
methods were subject to comprehensive checks to ensure that the correct geometry was retrieved on
specifying surface pressures obtain I from the analysis mode solution, incluling supercritical cases with
shocks.

Aside from the-above-comments, the details of the methods used are not discussed in this paper.

In the next section, some general characteristics of supercritical aerofoils will be described, to set the
scene. The combat wing aerofnil design exercise is discussed in section 3 and the high Reynolds number
design exercise in section 4. The laminar flow and propeller blade aeylofoiis are described in sections 5
and 6, respectively.

2 SUPERCRITICAL-AEROFOIL FEATURES

Broadly speaking, the design of supercritical aerofoils involves geometric shaping to control the flow
development such as to maximise lift or thickness/chord at a given Mach number, suoiect to constraints on
wave drag and viscous drag, and the avoidance of significant flow separation. Typical features of the flow
development and geometry of a supercritical aerofol1 are sketched in Figs 1(a), (b), including some
teninology commonly used. The flow development shown, with an isentropic recompression ahead of a weak
shock, is actually representative of a drag--ise cruise point on a transport aircraft wing. The flow
development would be different at other conditions, or on aerofoils for different applications.

A primary aerofoil parameter Is thickness/chord. At the condition shown, the maximum velocity due to
thickness alone may oe near to sonic, and the thickiess/chord Which gives this velocity reduces as the
freestream Mach number increases. The thickness form tends to he cusped towards the trailing edge, with a
low included angle and some base thickness. The base-thickness is limited by the need to avoid excess base
drag.

The term 'rooftop' refers to a region of roughly constant, near-maximum velocity on either surface. A
near-sonic rooftop would occur on the upper surface at a lower incidence but it is restricted to a region
Just downstroam of the shock in the supercrltical condition shown. The steep pressure rise over the aft
part of the upper surface com.ences at the end of the rooftop.

The combineJ effect of an extensive rooftop and the cusped thickness form is to give appreciable rear
loading, with a concave lower surface over the -ear of the aerofoil. The rooftop extent is constrained by
the need to avoid-excess viscous drag and/or flow separation due to the steepness and magnitude of the aft
pressure rise. This is alleviated by the effects of the low included angle at the trailing edge and the
base thickness, which tend to reduce the trailing edge pressure towards the freestream value. The aft
pressure rise reduces with increasing fieestream Mach number and so the corresponding rooftop extent
increases. The combination of thickre,%/chord, thickness form and rooftop extent at the condition shown
determines the steepness and magnitude of the lower surface aft pressure rise, and this should be
constrained to avoid viscous penalties.

Consider next the supercritical flow development. Over the supercritical region the surface curvature
generates expansion waves which reflect from the sonic line as compression waves. If the supersonic
velocity is constant the curvature is such that there is an exact balance between the rate at which
expansion waves are generated at the surface and the rate at which compressien waves arrive at -the surface.
increaseo curv&ture towards the leading-edge together with reduced ct-vture, ov flattenlno, over the main
supercritical region gives a trend to a higher peak suction followed by a recompression. The recompression
occurs because the incoming compression waves originating near the leading edge over-ride the reduced
expansion from the flatter region. The shock strength depends on the total surface slope change between
the sonic point on the nose and the shock position, as a measure of the net expansirn in the supercritical
region.
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The peak suction level may need to be constrained to avoid excess wave drag at lower Mach numbers, whrre
the shock is located well forward on the chord. If the surface curvature over the main supercritical
region is too low, the recompression may break down into a further forward, stronger shock. If the region
of low surface curvature is followed by sufficiently high surface curvature at the end of the rooftop,
there may be a supercritical expansion to a second shock. The resulting aft pressure rise may then give
viscous penalties.

It is apparent from the above comments that the aerofoil design has a strong dependence on -viscous effects.
Hence Reynolds number is an important parameter. Also, the accu.-acy of representation of viscous effects
in the theoretical methods could affect the quality ol the design achieved. Only inviscid inverse methods
were available for the design exercises discussed here but the inviscid designs were examined using-viscous
supercrltical methods. Some reassessment of the earlier designs by the more recently available BVGK
supercritical ,iscous~method is included here.

3 COMBAT WING AEROFOIL

This exercise representedan early (1973) attempt to use the newly-available TSP supercritical theory for
aerofoil design. The aerofoll was intended to form the basis of the swept wing of a combat aircraft
research model which was to be manufactured and tested in the ARA 9'x8'(2.74m x 2.43m) transonic wind
tunnel. The design requirements of the aerofoil were translated from those of the 3-D wing using simple
sweep concepts. The design requirements, the test performance achieved and the final aerofoil geometry are
shown in Fig 2. It can be seen that the design requirements comprise three separation boundary points at
M=O.5, 0,7 and 0.75, high 1jft, and a drag rise point at M20.75, C1=0.O. The aerofoil design and test
Reynolds number was 3.5 x 10 , for consistency with the 3-D wing tst conditions. Only a brief description
of the overall design exercise will be given, the main intention beinq to discuss the use of the DES2D
program to develop the aerofoil geometry to meet the high lift requirement at M=0.75. The design
exercise is described in more-detail in Ref 11.

The starting point for the work was an existing aerofoil of about 8% thickness/chord, derived from an
earlier wing of similar planform. The first design steps included incorporation of a drooped leading edge
profile, taken from a separate aerofoil which had demonstrated good high 1,ft characteristics at 11=0.5, and
a modification to the forward lower surface to weaken an excessively strong shoed. wave which was predicted
at low lift, to ensure that the drag rise requirement would be met. The lower surface problem was partly a
consequence of the introduction of the drooped leading eage, and the milfication resulted in an increase
in thickness/chord to just over 10%. Also, a-blunt trailing edge of 1% thickness/chord was introduced, in
an attempt to avoid the possibility of premature flow separation at the trailing edge, at the relatively
low design Reynolds number. At this stage of its development, a calculation using the DE52D program
indicated that ac high lift at M=0.75 an excessively strong shock was to be expected on the upper surface
and that extensive redesign of much of the upper surface would be required if the separation boundary
requirement was to be met.

The next step takeai was to 'key' the upper surface geometry to that of the Korn aerofoil (Ref 2), an
aerofoil wirich was oelieved to feature a desirable upper surface supercritical flow development at M-0.75.
A design calculation was performed at M-0.75 using subcritical Weber theory, with target uppcr surface
pressures similar to those calculated for t'e Korn aerofoil using the same theory. The pressures are shown
in Fig 3(a), with the aerofoil at this stage of its development referred to as aerofoil A. The minor
differences in pressures over the supercritical region were partly a consequence of keeping-the geometry of
the leading edge and much of the lower surface unchanged in the ddsign- calculation. It was necessary to
remove the thick trailing edge from aerofoil A to enable the Weber theory to cope. The subcritical theory
cannot, of course, predict the true supercritical flow-development; the exercise was purely for matching
purposes. The intention was to go at least part of the way towards a suitable upper surface geometry and
then to use the DES2D supercritical method to refine the design.

Fig 3(b) show; that the shock strength was still high on aerofoil A (with the thick trailing edge
reintroduced) according to OES2D, at a lift coefficient AC = 0.1 below the target. Attempts were made
to weaken the shock by'specifying the design target pressure shown. However, all that could be achieved,
despite repeated attempts, were the pressures corresponding to aerofoil B. This was felt to be an
improvement on aerofoil A in that the shock was slightly weaker, despite the re-expansion ahead of the
shock. A check calculation on aerofoil B at M=0.7 suggested that the design was reasonably consistent with
the separation boundary requirement at that Mach number but that the flow development at a Mach number
intermediate between 0.7 and 0.75 would be worth in, tigating. The result of a DES2D calculation at
M=0.73 is shown in Fig 3(c) and it is clear that the , ercritical flow development has broken down into a
two-shock system. Design target pressures which removed the second supercritical region were then
specified, as shown, and the program successfully converged to this target. Following some mild smoothing
of the blend-between the fixed leading edge shape and the rest of the aerofoil, this defined the final
geometry.

During;the course of the final design *terations, the lower surface geometry had remained fixed, as well as
the leading edge geometry. The changes to the upper surface left the overall thickness/chord almost
unchenged but the trailing edge thickness/chord had increased to about 1.4%. It was assumed that any
increment in drag due to the base thickness would be small enough to be ignored in a combat aircraft
context but the lack of control over base thickness was felt to be an undesirable feature of the design
approach followed.

Having completed the design it was necessary to check that the aerofoil would meet the design targets. For
the high lift point at M-O.5 and the zpro lift point at M=0.75 the G+K method was used because the shock
was located fairly close to the leading edge in both cases and TSP methods typically fail to provide an
adequate predicton of suction peaks around the leading edge. Allowances for viscous effect were
estimated, partly, on the basis of similar calculations for other tested aerofoils. At M=0.7, 0.75 the
high lift performance was assessed using T PVISC. Predicted pressures at M-=0.75 are shown in Fig 4(a)
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compared with those subsequently obtained in the experiment, over a range of incidences approaching the
separation boundary. The likely performance was inferred from the predicted shock strength and boundary
layer development. The supercritical flow development and shock strength are quite well predicted by the
theory but there are substantial differences in pressures between theory and experiment over the aft part
of the aerofoil, presumably due, in part, to inadequate modelling of thick base effects, and this implies
that the predicted boundary layer development was incorrect. However, it was concluded from the above
checks that the aerofoil would meet this and other design targets and reference to fig 2 shows that this
proved to be the case.

Pressures at M-0.75 calculated by the subsequently developed BVGK method are compared with experiment, dt
the same values of C , in Fig 4%b) and it can be seen that the comparison over tile aft part of the
aerofoil, in particulaY, is much improved compared with TSPVISC. The remaining differences are as likely
to be a consequence of inadequacies in the experiment as in the theory. It is Interesting to note that the
BVGK calculations predict the onset of flcw separation at the foot of the shock and this is consistent with
examination of the experimental data, which suggest that the aerofoil exhibits predominantly 'class A'
separation characteristics (see Ref 12) over a range of Mach numbers. This is presumably the major reason
for the satisfactory prediction of performance using methods with inadequate representations of viscous
effects. Nowadfty, a method such as BVGK can be used to predict aerofoil performance characteristics with
much'greater confidence. Note that had the design exercise stopped with aerofoil B, the influence of the
viscous flow development would havp been greater and the performance would have been more difficult to
predict with the methods available at the time.

Looking-back on the design exercise, it appears probable that the target supercritical peak suction and
recompression, shock strength and position for aerofoil B, shown in Fig 3(b), were inconsistent with a
possible surface geometry. The recompression required a flatter upper surface aft of the fixed leading
edge and so higher curvature was needed around the shock position to match the original profile further
aft, and this implied a stronger shock. The supercritical flow development on the f'nal aerofoil shown in
Figs 4(a), (b) suggests that associating the target recompression with a further forward shock position
would have proved more successful. This vas not obvious at the time, off-design calculations being
necessary to resolve the problem.

4 TRANSPORT WING AEROFOIL

It is common practice to design transport aircraft wings to achieve acceptable performance in wind tunnel
tests and then to extrapolate the test data to predict the performance at full-scale Reynolds number.
Almost invariably, a performance increment, a consequence of the thinner viscous layers, is predicted.
Another approach would be to design from the start to take advantage of the thinner viscuus layers,
although considerable confidence in techniques for extrapolation of the wind tunnel data, or tests at
appreciably higher tunnel Reynolds numbers than dvailable at present, would be required before going ahead
with an aircraft project designed on such a basis. The exercise discussed here concerns a theoretical
attempt to quantify what performance increment could be expected of a 2-D aerofoil from such an approach.
The work was carried out shortly after the VGK and Tranen programs became available at ARA (1978), these
methods being used rather than tha TSP methods since their improved accuracy was felt to be necessary.
Also, the option of fixing trailing edge thickness-was an attractive feature of the Tranen progrdm.

A research aarofoil of relatively advanced aerodynamic standard (aithough not an optimum design) was
selected as a datum and a new aerofoil was designed for a representative full-scale Reynolds number,
subject to certain constraints adopted in an attempt to maintain somne consistency in aeiodynamic standard.
The datum aerofoil was a theoretical design of about 12% thickness/chord, with a noiinal cruise point
H = O.75, C , 0.7. At this condition the flo, featured 5n isentropic recompression ahead ,f the shock,
and viscou layers which were judged to rema n attached and likely to contribute little or no excess
viscous drag at a Reynolds number of 6.0 x 10 , according to a VGK calculation with transition assumed
close to the leading edge on both surfaces. The base thickness was about 0.5% chord. The Reynolds number
assumed is typical of tests on 5 inch (127mm) chord models in the ARA 18 inch x 8 inch (457mm x 203mm) 2-D
wind tunnel. Pressures on the datum aerofoil at the cruise point are included in Fig 9, which will be
discussed later. The aim in the design exercise was to increase lift for a given thickness/chord, by
extending the upper surface rooftop and moving the shock downstream by a similar distance. The constraints
adopted were that the shock strength, viscous flow development and pitching moment of the full-scale design
should be similar to those of the datum aerofoil and that the leading edge suction peak should not be
exceeded.

In redesigning the datum aerofoil, the identical base thickness was retained. In the calculations referred
to below, the base thickness was Included in the geometries used for the VGK and BVGK calculations but was
removed from the geometries used for the Weber calculations because of the sharp trailing edge requirement.

An init'.al aerofoil shape was obtained by using Weber theory to redesign the upper surface to give an
exteided rooftop. Te target rooftop extension was adjusted until, at a represtntatlve full-scale Reynolds
numbee of 35.0 x 10 , the boundary layer development towards the trailing edge matched that of the datum
aerofoil at the lower Reynolds number, according to VGK. The intention was to go most of the way towards a
suitable upper surface geometry using the subcritical theory and then to refine the design using the Tranen
program. It was fodnd that simply extending the rooftop had no effect cn the shock position, which
remained the same as on the datum aerofoil, and it appeared that it would be necessary to use the
suoercritical inverse method to move the shock downstream.

For the Tranen calculations, displacement surface geometries were used so that the ir,viscid prnonir - were
lit 4ui diffurent from what would b given by a viscous calculation. ,ne starting point for the redesign
was a G+K calcflation on a displacement surface geometry given by smoothing the VGK boundary layer
displacement thicknesses and adding these to the initial shape. Fig 5 shows pressures given by this
calculdeicn and b) a calculation for a shape which aruse from several loops through the Tranen program,
compared with the design target. The design target preszures on the upper surface were chosen to be the
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same as for the initial shape apart from the downstream shift of the pressure rise corresponding to the
shock. On the lower surface, the design target pressures were chosen in line with the pitching moment
requireme;ir, Also, the lower surface adverse pressure gradient was expected to result in a match of the
viscous fl w'development of the datun aerofoil in that region, at the higher' Reynolds number.

It appears from Fig 5 that the rranen program has functioned satisfactoril as an inverse of G+K, apart
from the fact that the suction peak close to the leading edge is higher then speclfied. The reason for
this may be inferred from the comparison of aerofoil displacement surface geoietries in Fig 6, plotted to
an expanded scale to illustrate the differences clearly. The calculatiol ra moved the shock aft by
increasing the surface curvature downstream of the original shock rosition. The surfaca slope is sim!lar at
the new shock position, since a similar shock strength is required. The ,iet "Askt is that the surface
further forward is tilted down, giving increased curvature where the surface I ends with the leading edge
and, hence, a higher suction peak. It is probable that an upper surface geome ry could not be found which
corresponded precisely to the target pressures.

The technique adopted for arriving at the final shape involved the use of Weber theory. For this purpose
it was necessary to define a sharp trailing idge version of the Tranen design geometry and this was done by
removing displacement thicknesses as well as the base thickfiess. For convenience, the displacement
thicknesses which had been added to the initial shape were used, although these took no account of the
changed pressures. Fig 7 shows the results of Weber calculatlons which were then carried out for the
initial and Tranen designs.

The pressure distributions in Fig 7 are, again, unrealistic in the supercritical region. Howrver, the
differences between the pressure are qualitatively what might have been expected of the Itsplacement
surface geometries already seen in Fig 6. The 'wriggle' in the pressures for the Tranen desigr originated
in the choice of the design target shock pressure rise. The difference in suction levEIs towards the end
of the rooftop suggested that differences in jpper surface boundary layer development towards the trailing
edge would be expected in viscous flow conditions. It was essential to control this feature but it was
felt that this could not be done, adequately, by continuing to use the supercritical method to refine the
flow development on the displacement surface geometry. The design work was continued using the Weber
theory, with target pressures progressively adjusted until, what was thought to be a suitable flow
development was given by VGK.

Fig 8 shows the final geometry compared with the earlier shapes, with the coordinates shifted to match at
the trailing edge. Figs 9(a), (b) show pressures on the datum and final aerofoils given by VGK and by
later calculations dsing BVGK. It was found that a reduced peak suction and a lower rate of supercritical
recompression-were-required on the-final aerofoil, to give a shock of similar strength to that on the datum
aerofoil, at the further aft position. The BVGK pressures differ in detail from those given by VGK but
show similar trends between the two aerofoils, The pitchiAg moments are not givep but were very similar
for the two aerofoils, according to both methods.

The viscous standard of the datum and final aerofoils was compar d on the basis of the development of the
calculated boundary layer incompressible shape parameter H. Figs 9(a), (b) include variations of this
parameter approaching the trailing edge on the upoer surface and around the maximum value on the lower
surface and it can be seen that the values compare closely between the two aerofoils according to both VGK
and BVGK. In view of the improved prediction of viscous effects expected of BVGK, the comparison of skin
friction C is of Interest, as a more direct indication of how close the flow is to separation. Variations
of CF are ncluded in Fig 9(b) and it can be seen that the values are reasonably consistent on the upper
surfaces of both aerofoils but there are appreciable differences on the lower surface, a result to be
expected for flows with similar "alues of H (not close to separation) and a factor of 6 difference in
Reynolds number.

The lift increment from designing for full-scale Reynolds number was assessed to be over 10% according to
the VGK comparisons, with the constraints adopted, but this assessment clearly depends on the accuracy of
the viscous representation. The later BVGK calculations confirm the VGK assessment, apart from possible
consequences of any changes to the lower surface which might be desirable in the light of the CF
comparison.

Referring back to Fig 8, it is noteworthy that the inverse supercritial method changed the upper surface
of the initial geometry In an opposite sense to the changes required for the final geometry. This occurred
because the choice of supercritical target pressures was not quite appropriate and beLause viscous effects
were not allowed for adequately by using the displacement surface geometry. The experience gained in this
design exercise, and in the combat wing aerofoll design exercise discussed earlier, has led to-a reluctance
at ARA to attempt to make significant changes to the supercritical flow development using thu inverse
supercritical methods. Instead, the approach adopted in more recent aerofoil design exercises has been to
get to know the effects of geometric changes on flow development, using inverse methods in subcritical
conditions, mostly, and by using mathematical expressions or drawing, as appropriate, to oaefine the
profiles. The next two sections contain brief descriptions of aerofoils designed more recently at ARA
using this approach.

5 LAMINAR FLOW AEROFOILS

Fig 10 shows geometries and p-essures f.r two research aerofoils designed to maintain significant runs of
laminar flow on both upper and lower surfaces in-conditions corresponding to cruise. The NLF aerofoil wai
representative of the outer i - if a, possible- executive jet aircraft, with a Reynolds number of 10,0 xO
assumed. The suction aerofoi. was representative of 6the outer wing of a possible medium sized civil
transport aircraft, with U Reyiwid& iumber of 35.0 x 1O uumed. Thu sweep wat taku,i tw be bout 20

^ 
it,

both cases, Flow conditions Dn-the 2-D aerofoils were related to 3-D using simple sweep concepts. The
design pressures were used in conjunction with sheared or tapered wing finite difference boundary layer
methods, with vani.io predicted according to various simple criteria and 3-D stability analysis.
Transition position has a strong dependence on Reynolds number and so it was necessary to use the flight
values in the ca,culations.
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The pressures on the NLF aerofoil were given by a VGK calculation. Both Weber theory and the Tranen
program were used in the design of the profile, with the Tranen program particularly useful in controlling
the pressure gradients over most of the forward parts of both surfaces. This was necessary to constrain
the amplification of instabilities in the laminar boundary layer velocity profile, both in the streamline
direction (Tollmien-Schlichting) and in the cross-flow direction, and thus delay the onset of transition to
turbulent flow. The detailed leading edge shape was important in avoiding both attachment line
contamination and transition due to cross-flow in the favourable pressure gradients immediately aft of the
leading edge. It was fou',' Jifficult to control the detailed leading edge shape in design calculations
using the Tranen program, and empirical modification of the shape by drawing was resorted to.

Similar techniques were used in the design of the suction profile. The pressures were given by a G+K
calculation for the displacement surface geometry, the boundary layers being extremely thin at the high
Reynolds number, with laminar flow assumed to be maintained to a far-aft chordwise position on both
surfaces. The extent of laminar flow assumed was reasonable because the specified suction quantities could
be increased until transition aas avoided, according to the transition prediction methods. The pressures
were-chosen to minimise the suction quantities required to maintain laminar flow, with little or no wave
drag.

Pressure distributions at two slightly different freestream Mach numbers are shown in Fig 10(b) and either
of these could be regarded -s representative of cruise conditions. Pressure gradients over the laminar
flow regions are either very steep or near zero. These feattres minimise the tendency to cross-flow
transition, and suction is mainly necessary to constrain the amplification of instabilities in the
streamline direction. Higher suction is needed in the shock-free case due to the increased amplification
of the streamline instabilities in the adverse pressure gradient. In the higher Mach number case, the
favourable pressure gradient is more suited to maintaining laminar flow but it would be difficult to delay
transition-beyond the shock position.

The Tranen program was used to smooth the supercritical flow development, which was very susceptible to
slight surface unevenness in the supercritical flow region, particularly in the shock-iree case. The
program was also used to define the shape required to give the lower surface pressures away from the
leading-edge. The very small leading edge radius was necessary to avoid attachment line contamination, and
cross-flow transition close to the leading edge. It was found essential to define the leading edge shape,
and the blend with the rest of the profile, by drawing.

Note that the two aerofo'ls considered here are very specialised, although not necessarily optimised, for
the different applications. If changes in such parameters as sweep or Reynolds number were required, the
effects of changes to transition position in the NLF case, or suction quantities in the suction case, would
need to be included in the design process. Optimising such aerofoils for project applications could be a
substantially more laborious process than for turbulent flow aerofoils and more straightforward design
techniques than were used for the cases considered here would be desirable.

6 PROPELLER BLADE AEROFOILS

Propellers incorporating the ARA-D series of aerofoil sections are fitted to a number of commuter aircraft.
The design ;' these aerofoils has been described in Refs 13, 14 and this will not be repeated here, except
to say that the aerofoils are intended to operate at significantly higher -lift coefficients than NACA
series 16 or 65, traditionally used in propeller blades. This means that it is possible to produce
propellers with reduced-blade chord and hence weight, higher take-off thrust and improved climb and cruise
efficiency. Alternatively, the aerodynamic advantages can be exchanged for reduced tip speed and thus
noise.

Selected sections from theARA-D/A series are shown in Fig 11(a). These are essentially identical to the
ARA-D series for values of thickness/chord less than 10% but the thicker sections have been modified
slightly to reduce upper surface super-velocities at the higher aircraft cruise speeds which are becoming
more common. The high camber levels of the sections are apparent )nd these are mainly intended foo the
purpose of improving take-off performance. A camber factor, referred to as KI, is applied to the tip
sections to improve the high Mach number performance, since blade onset Mach numbers at the tip can be
close to sonic, even for relatively low cruise speed aircraft. The camber factor also varies from unity
across the complete radius of a typical blade, for structural reasons and in order to produce smooth blade
surfaces when the aerofoil sections are stacked. The complete ARA-D/A series is, like the ARA-D series,
defined by simple mathematical expressions which give the complete profile, Gf regular and smooth shape,
once the thicknessichord and camber factor are specified.

The ARA-U/A aerofoil sections are well suited to propellers designed for aircraft cruise speeds up to about
M=0.6. For higher cruise speed cases the sections provide acceptable performance when thickness and camber
are reduced, and the soinne is shaped to slow the onset flow over the thicker sections towards the root.
Howecer, the aerofoils were not optimised for such conditions and Fig 11(b) shows a selection of profiles
from a new series, referred to as ARA-D/S, which were designed to maintain high values of lift/drag up to
higher Mach numbers than ARA-D/A.

Pressures un ARA-D/S aerofoils of 2%, 10% and 20% thickness/chord (t/c), representative of tip, inboard and
root stations, respectively, on the blade of a high-speed propeller are shown in Figure 12. The 2-D
freestream Mach numbers correspond to the helical Mach numbers on the advancing blade, possibly including
some reduction due to spinner shaping for the thicker sections. The lift coefficients are around those for
peak lift/drag at the -given Mach numoer, as wouid be uxpeutLud v )tcu, on a b1zdc d - ned for
aerodynamic efficiency.

The pressures for the 2% t/c case in-Fig 12(a), at a supersonic freestream Mach number, were calculated
using the inviscid Jameson method. The pressures for the 10% t/c and 20% t/c cases were calculated using
VGK and extensive-runs of laminar flow were indicated at the-relatively low Reynolds numbers of 3.0 and
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2.0 X 10
6
, respectively, assumed for the calculations. These Reynolds numbers are representative of cruise

conditions on the blades of the high-sreed rotors planned for application to medium-sized transport
; aircraft.

( The 2% tic aerofoil comprises circular arc components blended smoothly to a nose shape defined by drawing,

with the aerofoil geometry optimised-to minimise wave drag at supersonic speeds, according to the theory.

The 10% t/c and 20% t/c aerofoils have similar nose radii, trailing edge included angles and base
thicknesses to tne corresponding ARA D/A aerofoils, and the surface curvatures vary smoothly along the
chord. These aerofoils were designed in subcritical conditions using Weber theory, with the base
thicknesses removed from the geometries, and the supercritical viscous flow development was checked using
VGK. The separate design of thickness and camber was a convenient feature of the Weber theory in view of
the geometric constraints on thickness form. However, the design of the thicker aerofoil presented
difficulties due to limitations on accuracy arising from the linearised basis of the theory. It can be
seen from Figs 12(b), (c) that it was possible to define aerofoils with relatively advanced supercritical
flow development by this tpproach. The rooftop extents were chosen such that, at the relatively low
Reynolds numbers assumed, well-attached flow was predicted by VGK calculations with transition assumed to
occur close to the leading edge on both surfaces. This is a conservative assumption which allows for
possible in-service deterioration of the blade surfaces.

ARA-D/S aerofoils "' intermediate thickness/chord vary smoothly in geometry and pressures between the key
2% t/c, 10% t/c anu - % t/c aerofoils. A means of varying camber for an aerofoil of given thickness/chord
is necessary for application to propeller blades, and this is introduced by interpolating geometries
between the ARA-D/S aerofoil, of nominally zero camber, and the ARA-D/A aerofoil of camber facto# unity.
The interpolated camber level is defined by a KI factor, as for the ARA-D/A aerofoils.

In addition to enabling a practical blade geometry to be defined, the camber variation introduces the
possibility of optimising the section geometries in the interests of the overall performance of the
propeller. Taking the 10% t/c case as an example, Fig 13(a) shows pressures on ARA-D/A and ARA-D/S
aerofoils at nomir-' cruise conditions, and oi, an interpolated geometry at an interpolated Mach number.
The geometric &' ,lion of the ARA-D/A and ARA-D/S aerofoils ensures that the intermediate geometry is
regular and saw 3 -s can be seen from the pressures. The lift/drag characteristics also interpolate
smoothly, as c,, ien from Fig 13(b). This means that if the Mach numbers on the propeller blade in
cruise are no. *ough to require the full ARA-D/S performance, interpolated sections of higher camber
than ARA-D/S . " used, in the interests of take-off/climb performance. The ARA-D/S aerofoils are
currently being ')y Dowty Rotol Ltd in the design of blades for high speed propell2rs. The geometric
constraints, adort in the interests of ensuring a smooth variation acloss the blade and blending with
ARA-D/A acrofoils ,laced some limitations on the scope for detailed refinement of the individt..1
aerofoils. Even st,, the aerofoils feature ,jvanced supercritical flow development, and performances in
line with requirements.

CONCLUDING REMARKS

I The general features of supercritical aerofoils representative of a drag-rise cruise point on a
transport aircraft wing have been discussed. The importance of viscous effects to the design was
emphasised and the dependence of the supercritical flow development on surface curvature-wds described.

2 Various aerofoil design exercises carried out at ARA, involving the use of both subcritical and
supercritical inverse methods, have been reviewed. The inverse methods used were inviscid but the
designs were examined using viscous supercritical methods.

3 A combat wing aerofoil design exercise w~s successful in meeting a number of target performance
requirements. However, use of an inverse supercritical method gave an unsatisfactory intermediate
profile and off-design calculations were necessary to resolve-the problem.

4 A transport wing aerofoil design exercise involved assessing the performance increment to be expected
from designing to take advantage of full-scale Reynolds number. Viscous effects were particulaily
important in this exercise but it was felt that these could not be controlled adequately using an
inviscid inverse supercriticai method, which produced changes to the upper surface geometry opposite to
those finally found to be required. An approximate inverse subcritical method was used to produce the
final geometry, involving progressive adjustment of the target pressures until a geometry was achieved
with a suitable flow-development according to the viscous supercritical theory.

5 The reasons for achieving incorrect intermediate geometries using the inverse supercritical methods
could be inferred from the relationship between surface curv3ture and supercritical -flow development.
Unfortunately, target pressures which satisfy this relationship are not known, in general.

6 L anar-flow aerofoils have been designed subsequent to the above exercises and the use of the inverse
supercritical methods was limited to design of the lower surface and smoothing the supercriticai
pressures. The leading edge shape is particularly important for such profiles but the- inverse methods
were inadequate for this purpose and it was necessary to resort to urawing. The design of such
profiles is particularly laborious, since effects on transition must be included in the iterations, and
improved techniques would be desirable.

7 A new series of aerofoils suitable for the bades of high-spnpd prnnpllerc has bccn deveiuped recently
and i cc,- bd briefly here. The geometries were mostly designed by the Iterative technique
involving the approximate suocritical theory. The geometric constraints, and the means of varying the
camber level, were included in the interests of practical application.
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8 Finally, it is felt from experience of such design e'ercises that it is necessary to understand the
effects of geeetric changes on both the supercritical and viscous flow development. Inverse
supercritical methods are unlikely to be entirely suitable for such work unless the supercritical
flow/geometry relationship is allowed for and unless viscous effects are included.
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SUMMARY

Some general remarks about aerodynamic design are given first. Then, a short survey
of the design methods used here including the basic ideas and, particularily, an
improvement of tho design method of McFadden for supercritical airfoils are presented.
Also, an overview is given of the analysis methods in use at the DLR Institute for
Design Aerodynamics.

Design procedures, which use the forementioned design and analysis methods, are
explained in detail. With these procedures, several designs of airfoils and nacelles
have been performed. Results of selected design examples are discussed.

NOTATIONS

c chord length of nacelle, airfoil chord, speed of sound

cD drag coefficient of airfoils

cDo zero lift drag coefficient of airfoils

cDW wave drag coefficient of nacelle and airfoils

CL lift coefficient of airfoils

CL max maximum lift coefficient of airfoils

cif pitching moment coefficient of airols

C P pressure coefficient

Cp-min minimum pressure coefficient

cp* critical pressure coefficient
Th mass flow through nacelle

M Mach number

Q, u velocity

QPU, QPL upper and lower limit M1 and M0 of transitional function

r radius of nacelle, coordinate inside unit circle

Re Reynolds number

a arc length along airfoil contour
V(M) transitional function

x,y rectangular coordinate system airfoil

x,z rectangular coordinate nacelle
a, ALP angle of attack

a. angle of attack relativ to zero lift for velocity specification in

design mode

a area ratio of the streamtube of the flow through the nacelle

amount of additional artificial viscosity

circumferential angle

O azngle in circumferential direction of nacelle
reduced flow potential

1. INTRODUCTION

One of the main tasks in aircraft industry is to develop products for new applica-
tions or with an increased efficiency for better achieving economic results to withstand
the large competition among producers and among- users. For this purpose, aerodynamics
can contribute wiih~ new or LuLct sUitd Shpp;c -for those p'vts which are surrounded by
the flowing fluid. The design of well suited shapes is an old difficult problem in aero-
dynamics because of its mathematical difficulties. Therefore a lot of work is spent on
developing better design calculation methods or at least procedures with which success-
ful aerodynamic designs can be realized. in the last 15 years, the Institute for Design
Aerodynamics has been involved in a number of design tasks in the area of airfoils and
wings. It started with the development of an airfoil for a sailplane of the "Akademische

------
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Fliegergruppe" of the Technical University in Braunschweig. This sailplane has won the
world championship 1978 in the FAI-15m class. The institute has gained a lot of experi-
ences in the following years in designing laminar airfoils for sailplanes and many of
the german modern sailplanes are equipped with these airfoils (1). For the transonic
range two rear-loading airfoils have been developed (21 of which the latter one was the
basis for the F4-wing which was tested in all important european transonic windtunnels
as a standard test wing (3,4]. Since then, additional transunic airfoils have been de-
signed and investigated 15,6,7]. In cooperation with the Dornier company several air-
foils for an advanced propeller for commuter aircraft have been designed and some of
them tested in the windtunnel (8]. The manufactured propeller revealed improved perfcrm-
ance when tested in flight (91. Also a cooperation with the MBB company on the field of
helicopter rotor airfoil development has been started in 1981 which showed successful
results as we shall see below (10,11,12). Laminar airfoils fur commuter and transport
aircraft have become more an6 more important . This fact has stimulated design work on
this type of airfoils. In the course of this work three laminar airfoils have been de-
signed partly in cooperation with aircraft industrie (13-17]. For basic research on
transition prediction several gloves for a general aviation (18] and a transport type
aircraft wing section have been developed and tested. AS the design procedures for lami-
nar airfoils showed good results, they have been extended on the development of a lami-
nar flow nacelle for Airbus Industrie of which some results are shown below (191.

This paper gives a brief survey of the used design and analysis methods and de-
scribes in short some of the procedures used for the design of the different types of
airfoils and nacelle contours. For one of the design methods, an improvement developed
at the institute is also presented. Some design examples complete this paper.

2. AERODYNAMIC DESIGN

2.1 General remarks

For the design process four essential parts are necessary

• detailed and accurate description of the design requirements

. design methods for providing the basic shape

. analysis methods to confirm the design and estimate the off-design performance

. experience how to use and to combine results from design and analysis methods to
do a successful design, e.g. the development of certain design procedures which
may be different from task to task but which have the same components.

In the following paper, the latter three points will be discussed. Although the
design requirements should be provided by the customer, and one may argue that they are
therefore out of discussion, their impact on the result is very strong and some state-
ments. are necessary. Only reasonable and feasible requirements can Lead to a successful
design. Therefore, permanent discussions between design engineer and customer are neces-
sary to clarify the problems and to end up in design requirements as accurate as pos-
sible.

2.2 Design methods

For designing airfoil and fan cowl contours a low speed design method for airfoils
according to Eppler and Somers (20] has been employed. This method is based on a confor-
mal mapping procedure. The flow arcund the airfoil is mapped into a flow around a
circle. The circle is split into segments. For each segment an angle of attack a, has to
be chosen. The calculation of the airfoil contour then implies that the velocity is
constant in each segment at the chosen value of a*.

The velocity decrease at the rear part of the airfoil can be defined by a set of
parameters and the closure condition is automatically realized. It should be pointed out
that this unusual way of specifying the velocity distribution enables the user to take
different design points into account.

As a method for designing supercritical airfoils the artificial viscosity method of
McFadden has been used (213. It is a design mode of the wellknown analysis code of
Bauer, Garabedian, Korn, Jameson (22,231 in which the full potential equation is solved
and the exterior to the airfoil is conformally mapped into the interior of the unit
circle (Fig. I. The code solves the inverse design problem by an iteration process in
which the actual pressure distribution calculated with the use of additional artificial
viscosity is compared with the desired one and a correction to the estimated airfoil is
made until the airfoil shape has converged.

It should be mentioned that further desion methods have been used in the Past. One
of these is the method of elliptic continuation of Sobieczky and Eberle (24,25), with
which some transonic airfoils for basic research have been developed. The other one is
the me.hod of Carlson (261 who also solves the full potential equation but, in contrary
to Bauer, Garabedian, Korn, Jameson, by using cartesian coordinates. Both methods need
an initial airfoil which is then changed. For solving future design problems in the
field of airfoils the method of Giles and Drela (27) have to be taken into account.
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2.3 Improvement of the design code of McFadden

In subsonic flow, the airfoils designed with the original McFadden code do exhibit
the target pressure distribution. However, if there are supersonic regions in the target
distributions, the calculated pressure distributions from the designed airfoils are in
general differant from the prescribed ones above all near the shock waves (fig. 2
(28].

Therefore, this method was investigated in more detail in cooperation between DLR
and INTA 129) in order to suppress or, at least, diminish as far as possible the discre-
pancies between the analysis and the design code. One result of these investigations
will be given here in short.

The iterative process developed in the original code seems to converge very we.l
for subsonic flows. In contrast, for transonic flows some problems may appear. They are
due to the presence of shock waves, that is, to the presence of large gradients in the
derivative of 0(s,w) which may cause a logarithmic singularity.

The problem can be avoided on coarse grids because the artificial viscosity inher-
ent in the finite differences scheme smoothes the shock wave. Zhis effect allows the
process to converge- even in the case of transonic flow. For modelling the flow accurate-
ly, we need to use fine grids. In that case, converged results are obtained by adding an
artificial viscosity to the potential equation with the form:

* . • (V(M) •

The factor sl is included for changing the amount of artificial viscosity to be
used, and V(M) is a smooth function of the local Mach number with the shape shown in
FiZg.3. In (211, it is suggested to use QPL = 0.85 and QPU = 0.95 as boundary values for
this function.

The main problem to be solved concerns the discrepancies between the analysis and
the design code, which are due to the use of the added artificial viscosity. Fig. 4
shows, that the artificial viscosity does not only influence the flow field in the su-
personic area and at the shock wave, but also far away from it depending on the values
given to the input parameters QPL and QPU. The influence of these parameter.s is shown in
Fig. 5.

There are a couple of reasons indicating that, away from the shock, the added atrti-
ficial viscosity is overestimated. First, it should not be necessary to use any additio-
nal artificial viscosity at subsonic points near the sonic line. On the other hand the
value of the artificial viscosity does not need to be so high as it originally is in
most of the supersonic zone, where the gradient of o is small enough. An improved func-
tion V(M) should therefore satisfy the following conAitions:

be zero in the whole subsonic region,
* be large enough in the supersonic area and near the shock wave,
* falling to zero on the sonic line.

The fact of using a first order retarded differences scheme for % at all superso-
nic points introduces an-error in the potential equation of the form:

AW • max [(ut - c2), 0]

that gives the idea of using the new function

max (MI - 1), 0]

of which an example is displayed in Pig. 6. In this way, the difference between the
analysis and the design codes becomes smailer.

The new artificial viscosity is

-1 " AW - max ((M2 - 1), 01 - Ow

instead of the original one

E! • AW • - [V M)
The velocity distribution derived from the analysis of the KORN1 airfoil with the

BGKJ-code (M = 0.75, cL = 0.629) in Fig. 7 has been used as input data for the improved
design code.

The flow over the redesigned airfoil was then again computed using the BGKJ-code
and Is presented in Fig. 8. it is shown that the results obtained with the modified code
are essentially equal to the input data in the subsonic region and also, the input data
could nearly be reached in the supersonic part. These calculations indicate very clearly
that by using the artificial viscosity only inside the superonic field d out -

side of it can be avoided and that ths new artificial viscosity which is concentrated on
areas with large pressure graoients gives a good agreement with the input data. When
using the original smooth design pressure distribution of the Kornl airfoil and carrying
out the same procedure as in the example before nearly the same behaviour is obtained.
The modified code yields a much better result (ig ).

_ _ -!--- --------------
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The third example, FLi. 10, shows an input pressure distribution with a prescribed
shock obtained from an analysis run including the effect of boundary layer displacement
thickness. The airfoil designed with the modified code yields a result which is nearly
the same as the input data. It has also been found that the thickness at the trailing
edge of the designed airfoil was almost the same as the thickness of the boundary layer
displacement thickness at that point.

2.4 Analysis methods

For verifying designed shapes and estimating their off-design behaviour it is con-
venient to use well proved and reliable analysis methods which are also numerical stable
and easy to handle and which have been checked against experiments and other methods.
Essentially two methods are employed for flows around airfoils without significant sepa-
ration. In the case of incompressible and lower subsonic flows the analysis part of the
computer program of Eppler/somers [20) has been chosen. It is originally a higher order
panel method for incompressible flow which has been extended by Rade iiel (30] to sub-
sonic flow by introducing a combination of two different compresatbility rules. For
transonic flow the well-known Bauer/Garabedian/Korn/Jameson method [22,23] is employed
which is based on a finite difference approximation of the full potential equation in a
transformed mesh to fulfil the exact boundary conditions. In both methods viscous ef-
fects are taken into account by adding the boundary layer displacement thickness to the
airfoil contour during the iteration process. The calculation of laminar and tdrbulent
compressible and incompressible boundary layers has been performed with the integral
method of Walz (31,32), method II, which is based on the numerical integration of the
integral equations of momentum and energy. The friction drag is obtained by integrating
the local shear stresses whereas the pressure drag is calculated after a proposal of
Pretsch (33] by application of the momentum law around the airfoil. For estimation of
the laminar-turbulent boundary layer transition the method of Granville [341 is used in
wh.ich a relation between an average shape parameter and the Reynolds number based on
momentum thickness between the point of neutral stability [35] and the transition loca-
tion is employed. For laminar airfoils at high Reynolds numbers, the transition location
prediction method based on the _.ability theory of laminar boundary layers is used. This
method defines transition by a certain limiting amplification exponent or N-factor of
the laminar boundary layer. £ransition is predicted if the limiting N-factor is exceeded
by the calculated amplific,tion values. The method is described in detail in [36].

For the analysi" z. the transonic inviscid flow around isolated nacelles an exten-
sion of the thrP -dimensional DFVLR Euler code CEVCATS is used. This code is based on a
cell-vertpv Zinite-volume scheme for the three-dimensional Euler equations. The scheme
uses central differences for the calculation of the flux balances and therefore artifI-
cial dissipative terms are used to damp high-frequency oscillations in the solution.
Steady state solutions are obtained using a Runge-Kutta time stepping scheme. The scheme
is analysed in detail in (37,38]. The extension of CEVCATS for the calculation of nacel-
le flows is described in (39].

The code uses a computational domain, which is divided into three blocks as
sketched in Fig. 11. In the streamwise direction an H-type grid topology is used whereas
a polar grid is used in the circumferential direction. In the present version of the
code the grid is rotationally symmetric and the core jet is simulated by a cylindrical
body. The total number of grid points is around 56000. Although characteristic boundary
conditions are applied at all inflow/outflow boundaries of the computational domain for
a proper convergence behaviour to the steady state, the code accurately reproduces the
mass flow into the inlet of the nacelle as specified by input.

For the calculation of laminar and turbulent compressible boundary layers around
the nacelle outer contour, the integral method according to Rotta (401 has been used.
The method is also based on the numerical integration of the integral equations for
momentum and energy and can be used for axisymmetric or plane :lows. In the axiEymmetric
case both external and internal flows can be calculated.

The use of an axisymmetric boundary layer code is certainly justified under cruise
conditions where the angle of attack is less than 1.50. For the take-off case, however,
a much larger angle of attack has been specified and three-dimensional boundary layers
within the inlet are expected. In this case the result of an axisymmetric boundary layer
code is of less value.

The transition location of the laminar boundary layer into a turbulent one is also
computed by means of the forementioned stability theory of laminar boundary layers.

Foe applying this 2D transition location prediction procedure it is necessary to
investigate the influence of 3D effects due to an axisymmetric geometry on tha laminar
boundary layer. This has been done in [411 with the Rotta method (40). The main result
of (41] is, that for a relative nacelle radius r/c 0.5 the differences of the boundary
layer parameters between the axisymmetric flow and the 2D flow are negligible.
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Using the present Euler code for the inviscid flow around the nacelle a direct
integration of the pressure drag is not possible for two reasons:

* The contour of the nacelle is not closed as shown in Figure 11.

• Usually, the pressure drag is a small value which is obtained from large inte-
grands. Therefore, a direct integration of the pressure drag is not very accu-
rate.

* The present Euler code does not account for the pressure drag due to viscous-
inviscid interaction.

On the other hand, it is possible to calculate the sum of pressure drag and fric-
tion drag of the outer flow around the nacelle from the stagnation point at the leading
edge to the trailing edge from the boundary layer results at the trailing edge according
to Squire and Young [42]. Hence, it is possible to estimate the drag increment between
nacelles with laminar and turbulent flow.

Furthermore. the wave drag due to shock waves in transonic flow is neglected in the
Squire/Young formula. Experiences with transonic airfoils indicate, that the wave drag
is negligible in comparison with the viscous drag if the Mach number upstream of the
shock does not exceed-M1 = 1.15. At higher Mach numbers, where the local Mach number M,
upstream of the shock wave is larger, the wave drag cDW is estimated by subtracting the
pressure drag at a lower Mach number without shock waves from that at the high Mach
number.

3. DESIGN PROCEDURES

By means of the analysis and design methods described in the preceding chapters,
the following design procedures have been proved advantageous for the design of airfoil
shapes for different purposes.

3.1 Sailplane airfoils

When designing airfoils for sailplanes at least two design conditions have to be
taken into account: the circular climb at low speed, low Reynolds number and high lift
coefficient and the distance flight at high speed, higher Reynolds number and lower lift
coefficien. Such a design task can be carried out, with some experience, using the
calculation system of Eppler and Somers (20] if the boundary layer method in the analy-
sis part is accompanied with a reliable and accurate method to determine laminar-turbu-
lent boundary layer transition location. The Eppler design code is well suited for the
design of laminar airfoils because both design points can be taken into account in a
simple manner. The angles of attack related to the design points can be used as input
data a* (see chapter 2.2) of the design code.

The same technique can be used for subsonic airfoils if the Mach numbers in the
flow field are not to high, i.e. for airfoils for low and medium speed general aviation
and-commuter aircraft and for propellers.

3.2 Helicopter airfoils

The flow around helicopter rotor blades is very different, depending on circum-
ferential location of the blades and the flight conditions. Therefore, the blade sec-
tions have to be designed for high lift coefficients at low Mach numbers, for low drag
at medium lift coefficients and Mach numbers and for low Irag at low lift coefficients
and high Macb numbers. in all cases the pitching moment coefficient should-be small.

It has been proved that a combination of the Eppler/r .rs design code and the
transonic Bauer/Garabedian/Korn analysis method is very efzlcient for such a multiple
objective design. The d.fferent steps in the complicated design process for such air-
foils are:

1. Choice of a prescribed velocity distribution or change of a velocity distribu-
tion used in a step before.

2. Calculation of airfoil contour and aerodynamic coefficients at main design ob-
jectives by means of the subsonic code of Eppler and Somers.

3. Reiteration of step 1 and 2 until the desired subsonic airfoil characteristics
are obtained.

4. Calculation of the transonic behaviour at all design objectives by means of the
Bauer/Garabedian/Korn III method.

5. Reiteration of step 1 to 4 until the desired subsonic and transonic behaviour is
obtained.



3-6

As both codes are unable to calculate separated flow regions they cannot predict
the maximum lift coefficient cr max. Comparison of measurements and calculation of simi-
lar airfoil types have shown thatthe following auxiliary criterions can be used for the
estimation of cL mxvalues. At Mach number of M = 0 3 CL ax is reached when the pres-
sure coefficient atthe calculated separation point is equal zero. At M = 0.4 either the
above separation criterion or a limiting maximum local Mach number of 1.4 was used.
Maximum lift coefficient at M = 0.5 was estimated-by limiting the local Mach number just
ahead of the shock pressure rise to a value of 1.4.

Some essential results of helicopter rotor blade airfoils designed with this proce-
dure will be presented in the following. A 9% thick airfoil, DM-HI, chowed the expected
zero j1ft drag vs. Mach number (Fig. 12) but the comparison of the measured and calcula-
ted drag polar at M = 0.7 seemed not to be satisfying for lift coefficients larger than
0.4 (Fig. 13). An oil-flow pattern indicated that a turbulent separation bubble was the
reason for this behaviour which could not be detected by the analysis method used here.
As a consequence, the Mach number and shock strength on the upper side (Fig. 14) was
reduced in order to avoid such separation bubbles. The experimental results of the im-
proved airfoil, DM-H3, given in Fig. 15 and 16, reveal the increase in the drag rise
Mach number as well as the improvement of the drag polar at M = 0.75.

The measured and calculated minima of the pressure coefficient for the 12% thick
airfoil DM-H2 at M = 0.4 differ from each other at large lift coefficients, Fiq. 1-i,
indicating that the expected maximum lift coefficient could not be realized. The transo-
nic calculation gives no indication of a shock in contrast to the experiment. The lack
of the transonic calculation in this case may be caused by a unsufficient number of grid
points which leads to a wrong boundary layer calculation shifting the predicted maximum
lift coefficient to a higher value To increase the maximum lift coefficient the small
local supersonic flow field has to be extended jFiq. 18), using a higher contour curva-
ture near the end of the supersonic region and corresponding changes of curvature up-
and downstream. This modification influences, of course, the aerodynamic characteristcs
at other operational points. Windtunnel experiments confirmed the increased maximum lift
coefficient of the modified airfoil DM-H4, Fig. 19.

These two examples may demonstrate that in such a design process, the reliability
of the analysis methods is of decisive importance. Therefore, it is necessary for such
cases to use methods which are able to calculate wave drag more accurately and to deal
with separated flows like separation bubbles behind shocks, laminar separation bubbles
or trailing edge separation. One can expect that the methods of Drela and Giles [43] in
which a panel method for incompressible flow and an Euler method for compressible flow
is combined with an inverse boundary layer method can fulfill these requirements.

This design procedure can be completed with the improved McFadden code especially
for designing supercritical airfoils or changing parts of them as can be shown in the
following example for a helicopter tail rotor blade airfoil. On the upper and lower
sides of this airfoil supersonic areas appear at the outer part of the advancing blade
wtich cannot be avoided because of other requirements. Fig. 20 shows the pressure dis-
tribution of the initial airfoil. The design aim was to reduce the wave drag. Fig. 21
compares the inviscid flow velocity distributions of the initial airfoil and the target
distribution in the supersonic areas for use in the McFadden design code. The result
presented in Fig. 22 indicates very clearly the improvement of the pressure distribution
and wave drag.

This described design procedure has also been used successfully in the development
of high subsonic and transonic laminar airfoils for transport aircraft [16,17]. Here,
the laminar-turbulent transition location prediction has been c rried out by means of
the forementioned stability theory of laminar boundary layer (ea-procedure [36)) which
yields more reliable results for high Reynolds numbers.

3.3 Design of a nacelle with natural laminar flow on the fan cowl

For the design of a natural laminar flow nacelle three main flight conditions have
to be taken into account. Cruise conditions are characterised by high Mach number, low
angle of attack and a medium mass flow ratio c which is defined by the relation of the
inlet stream tube area at infinity and the highlite area of the nacelle. At take-off
conditions low Mach number, high angle of attack and high mass flow ratio are present.
At landing conditions the parameters are similar except of the mass flow ratio, which is
very low.

The design of the nacelle contour has been done iteratively by means of the
mcthods des(.ribed in chapter 2. It has to be mentioned that the subsonic code of Eppler/
Somers is valid for 2D flow only and the pressi.re distribution for three-dimensional
transonic flow around a nacelle may be quite different from that of the low speed air-
foil.

Nevertheless, the angle of attack in the design code can be chosen, so that thetugf'atl~l PAnts oi, tILU 10ow Speed A coil and or, thie tranzonic nacc.l1c calncidc. Then,
the flows around the nose of airfoil and nacelle beha,.e very similar and the input para-
meters of the airfoil des gn code can be systematically used to change the transonic
behaviour of the nacelle. With some experience the flow around the nacelle can be effec-
tively influenced by changing the input of the low-speed code.
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The different steps in the design process are:

1. Choice of a velocity distribution taking into account the 2D subsonic and the 3D
transonic calculation of a given nacelle contour or of an iteration step before.

2. Calculation of nacelle contour by means of the 2D subsonic design code.

3. Reiteration of step 1 and 2 until the desired pressure distribution characteris-
tics in the different design points are obtained.

4. Calculation oZ the 3D transonic inviscid pressure distributicn at the design
points by the Euler code.

5. Reiteration of step 1 to 4 until a desired transonic pressure distribution is
obtained.

6. Calculation of boundary layer characteristics by means of the Rotta-method and
prediction of laminar-turbulent transition by means of a stability code.

7. Reiteration of step 1 to 6 until the design objectives are fulfilled as good as
possible.

Some of the nacelle contours designed in this way are shown in Figure 23. The con-
tours LN1A to LN1D show the modifications from the complete adverse outside pressure
distribution of a conventional nacelle to a typical natural laminar flow pressure dis-
tribution with a slight pressure drop up to 60% of chord length, Figure 24. Thus, the
maximum thickness is increased from 7.4% to 9.6% and the location of maximum thickness
is shifted downstream.

Another important design point is the take-off case with low Mach number and high
angle of ottack. Figure 25 shows, that the inside pressure peak at the 0 = 1800 section
can be reduced by a careful design. rom LNID to LN1 the contour curvature is decreased
in the supersonic region and inc' eased behind it, resulting in a reducea supersonic
expansion.

4. CONCLUSIONS

In order to perform the different design tasks successfully, the following essen-

tial conditions have to be fulfilled:

- Detailed and accurate description of reasonable and feasible design requirements

* Both reliable design methods and efficient and validated analysis methods have to
be available

- Physically established efficient design procedures have to be developed for dif-
ferent tasks using suitable design and analysis methods

on the basis of these principles a number of design tasks for industry and research
have been carried out with good success.

These tasks, of which some results have been shown, comprise the design of:

* Laminar airfoils for sailplanes (sailplane-industry)

* Supercritical airfoils (basic research)

* Propeller airfoils (Dornier TNT Experimental)

* Helicopter rotor blade airfoils (MBB BO-108)

* Laminar airfoils for high Reynolds numbers (Dornier, gloves for LFU-205 and ATTAS
research aircrafts, Airbus 310 type aircraft)

* Natural laminar flow nacelle (Airbus Industrie, A320 type aircraft)
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SUMMARY

The classical problem of constructing an airfoil profile that corresponds to an arbitrarily
prescribed speed distribution is discussed and recast hero in a form Suitable for transonic
applications. The problem, in general, is not well posed unless the specified speed distribution
satisfies certain constraints. Thus, a solution exists only if the speed distribution contains a
sufficient number of free parameters with values that can be adjusted In order to satisfy the
constraints. This paper discusses the nature of rhe constraints and proposes several strategies for
Introducing the necessary freedom in the speed distribution. The computational method described in this
paper determines the values of the parameters as part of the solution. It is based on the numerical
solution of the full potential equation in conservation form with DirIchlet-type bourJary conditions by a
multigrid-ADI scheme. The general applicability and the accuracy of the numerical method are illustrated
by several examples.

1. INTRODUCTION

The problem of designing airfoil profiles has aroused considerable theoretical interest for well
over half a century because of the tremendous, practical implications. The aerodynamic performance of an
aircraft can be greatly enhanced by tailoring the airfoil to its specific commercial or military
requirements. An aircraft design usually calls for the wing profile to exhibit specified lift and/or
drag characteristics, a particular lift distribution, or a specific velocity distribution that would
provide a measure of control on the behavior of the boundary layer. In these cases, the airfoil design
problem is reduced to the specification of a desired speed or pressure distribution.

Mangler' and Lighthill' discussed this "inverse" problem of airfoil theory for the case of
Incompressible flow and proposed various analytical solutions. Their methodology was refined and adapted
for application on large and small computers by successive researchers.'-' However, the difficulty in
extending the methodology developed fnr incompressible flow-to the transonic regime eventually gave rise
to a number of alternate methods. In a pure inverse-type method of airfoil design -- such as those of
Hangler and Lighthill -- the speed (or pressure) distributions desired on the surface of the profile are
specified along with the magnitude and direction of the free stream. In contrast to the direct problem
in which the shape of the airfoil profile is specified and the surface speed is computed through a
solution of a Neumann-type problem, the inverse problem does not necessarily have a solution. A solution
to the inverse problem exists only if a certain constraint between the free-stream speed and the surface
speed is satisfied. In incompressible flow, which can be described by Laplace's equation, this can
easily be shown and the constraint can be expressed in closed form. If, in addition, it is required that
the airfoil profile be closed (or have a particular trailing edge thickness), two additional constraints
appear. They can also be expressed in closed form for incompressible flow. The existence of these
constraints has been known since the work of Mangler and Lighthill, and Woods has extended the analysis
to subcritical comproesible flows of a Karman-Tsien-type gas. The work of these authors indicated that a
specified surface speed distribution had to be altered in such a manner as to satisfy the three
constraints in order to guarantee a olution. In their methods, as in the refinements that followed, -
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the approach was to prescribe the surface speed distributions with three free parameters whose values
were to be adjusted to satisfy the three constraints.

An obvious advantage of inverse methods Is the control the designer has over the force
characteristics of the airfoil profile and over the boundary layer development on its surface, a control
gained through the pressure (speed) diL -.ibution that is specified. This control can still be retained
when making the changes that might be vecessary to satisfy the constraints. The Introduction of the
three free parameters can be arranged such that an "ideal" speed distribution Is modified only over
selected segments of the airfoil surface. Desired characteristics of a speed distribution (e.g.,
"rooftops," Stratford-type pressure recovery, rear or front loading) can be retained with little or no
modifications.

The formulation of an inverse method at superoritical speeds has been probleatio because of the
lack o1 closed-form expressions for the three constraints. The existence of constraints for the
transonic design problem was intuitively true because the Incompressiole design problem wcs a subset of
the more general compressible problem. The lack of a clear understanding of the nature of the first
constraint was the main source of the difficulties. A number of alternate upproaches to airfoil design
were thus developed, each approach having its particular advantages and disadvantages. A number of
methods, such as those of Ricks at al.,' Davis,' McFadden," Tranen," and Carlson" can be classified as
"diroct" methods. In these methods the solutions (pressure and/or force characteristics) for the flow
Over s,e ".Li trary ., O t-3- irfiol miOtuut atv cumpared with a desirud o of vaiues ;or tno pressure
distribution or forcer. The differences between the "target" and "current" characteristics are used in
some rational way to modify the airfoil profile in the hope of reducing these differences. The process
obviously has to be iterated. One advantage of such methods is that a realistic airfoil profile Is
always obtained at every step o the iteration, The biggest disadvantage, however, Ic the lack of a
guarantee that the iteration will converge with the differences between computed and target values
reduced to arbitrarily small levels. The question of the existence of an airfoil solution for a
particular "target" pressure distribution is skirted in these methods and, In fact, they will not
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converge for arbitrarily prescribed pressure distributions that do not satisfy the three constraints.
This approach to airfoil design is best suited to applications where the target pressure distribution is
a "small" modification of the one-computed over the initial profile.

Another approach pioneered by Sobieczky'" is built around the concept of the fictitious gas in
regions or supercritical flow. This approach is ideally suited to the redesign of an existinq contour in
a way that the new ocinour will have shock-free flow. This- technique is much easier to implement than
hodograph methods for the design of shock-free airfoils such as those of Garabedian and Kern (see Ref.
14l) and Boorstoel.' 5 In neither of these classes of methods does the user have control of the pressure
distribution, however. Such control can be exercised only with-an inverse method.

A formulation of the iverse problem for airfoil design at transonic speeds was finally given by
Volpe and Melnik.1" They devised a method in-which the first constraint could be satisfied by treating
the value of the free-stream speed as a free parameter that is determined as part of the solution of the
Dirichlet problem. Alternatively, the target surface speed distribution could be-scaled keeping-the
free-stream speed fined. The two options are equivalent In practice since the quantity of interest Is
the ratio of the surface to free-stream speed. The discovery of a mean by which the first constraint
mitht be satisfied essentially completed the extension of the methodology of Hanglc. and Lighthill to
transonic flow. In the method described in this paper, three free parameters are adjusted numerically to
drive the values of the free-stream speed and trailing edge gap dimensions to prescribed values. The
trailing edge parameters are introduced in such a way that each mainly affects only one of the
constraints. This permits the formulation of a diagonal-type Iterative scheme In which the three
parameters can be determined from three uncoupled one-dimensional relaxation methods. The result is a
robust method for thi design of airfoils that generate speed distributions in close approximation to an
arbitrarily prescribed ideal.

2. FORMULATION OF THE INVERSE DESIGN PROBLEM

The problem being addressed is the construction of the airfoil profile, which has a surface speed
distribu~lon, q , equal to some desired function, F, everywhere along Its arc length,a. This is to be
measured ,.ockwse around the airfoil contour starting at the lower surface trailing edge point. The
airfoil's coordinates, x,y, can be parameterized-as functions of a. A feature of practical airfoil
contouru is that the trailing edge be either closed or have a very small gap. Thus, a requirement on the
to-be-determined airfoil is that the upper and lower surface trailing edge points-be -separated by
prescribed distances Ax and Ay. The horizontal gap, Ax, is usually set to zero, while the vertical gap,
Ay, is set to zero (a closed airfoil) or to a small positive number. Tne-free stream Is also defined by
prescribing values for the-free-stream velocity q., temperature, and pressure (or density). These in
turn determine the free-stream mach-umber, M.. In incompressible flow, of course, it is only necessary
to specify the velocity in order to identify the free stream uniquely. Our formulation applies in Its
entirety if we specify a surface-pressure distribution instead of a surface speed since the two are
uniquely related. Forsally, then, the problem is to determine the airfoil profile of a specified

trailing edge thickness corresponding to the speed distribution

qOo F(s/smax
)

Without loss of generality, sma can be set equal to one; q is taken as positive in the clockwise
direction around the airfoil. The strategy followed is to Iteratively modify some initial Contour until
the desired speed distribution, q0 , is achieved. This initial contour can be mapped into the unit circle
by the unique conformal transformation

dz [1 -l '() e(P + iQ) (2)

where z - + iy and C - reiit are the coordinates in the physical and mapped planes, respectively, and ex

is the included trailing-edge angle. This equation can be separated into its real and imaginary parts.
Thus, on r - 1,

ds iesi ]")eP 3
jsinj e2( (3)

2

;here 0 is the local slope of the airfoil. Q Is the Fourier series

N
- (A sin n= - B coz nu) (5)

n-0 n n

and P is its conjugate series. Because 0 is known as a-function of a, the coefficients of the series can
be found by standard-Fourier-analysis-as described in Ref. . With this mapping procedure, the leading

Lu f =4 vr ui ze t iviv Lj I11, a (., Ay" by

A1  2 - (2u-)sin B - (Q-) cos-B (-c)

. (A)cos sin (6)
21 o0 2w~ si 0
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In the case of incompressible flow, if go were defined in terms of the circle plane coordinate, u,
then the airfoil contour corresponding to qo could be constructed immediately. The complex potential, w,
for the Incompressible flow past the circle (to which the unknown airfoil Is mapped) Is

i
a

w - qj4ei la , 0=- ir log c

where a is the angle of attack of the free stream and r is the circulation around the circle. '.,e value
dw

of r is obtained by requiring that the velocity be zero at the point on the circle corresponding to
the airfoil's trailing edge. Now

ds dz1  dw1 ldw
1  (8)K ILI- I,,C (zi

dw=

and, In the physical plane, ILdI - go The right hand side of Eq. (8) is then completely known as a

function of w. Using Eq. (3) and (5) the coefficients of the series of'the transformation can be

evaluated. Once has been expressed as a trigonometric series in w, the airfoil coordinates, z, are

found by Integration.

If qo is prescribed as a function of arc length, s, some iteration will be required in this

procedure since , which is needed in Eq. (8), will not be known as a function of w until after s(W)

Is found. However, the design of the airfoil is still a straightforward process.

For compressible flow of a perfect gas, the flow past the circle cannot be expressed In closed
form. However, it can be computed numerically, and a simil!ar Iterative procedure can be formulated for
compressible flow.

Specifically, the procedure will be as follows: An initial airfoil contour Is mapped into the unit
circle and the flow around the circle is solved subject to the conditions on the circle boundary that the
tangential speed be the required total speed. The passage from %q(s) to qo(w) is done using the current
s(u). In this flow the circle boundary is not necussarily a streamline and the departure of the boundary
from a streamline can be used to find a correction to the aircraft contour. Using the new metric the
process can then be repeated.

The following sections will describe a numerical scheme for computing the compressible flow in the

circle plane and a method for updating the airfoil contour.

3. TRANSONIC FLOW FIELD SOLUTION

The infinite flow field around a unit circle can be transformed into the finite region inside the
circle. The modulus of the transformation of the physical plane, z, to the inside of the circle Is then
written as

r

dz/d; Is, of course, the quantity we seek since it describes the transformation of the unknown airfoil
profile Into the circle. It should be recalled that the transformation is conformal everywhere except at
the airfoil's trailing edge where the metric h-O.

The flow in the circle plane Is assumed to be governed by the continuity equation

_ (pU)+r2-(pV)-O (10)

U and V are the transformed circle plane velocity components in the r and w directions, rospectively.
For Irrotational flow they can be expressed as gradients of a potential function 0; thus

U- f, V-ror (11)

As long as shock waves in the flow remain of moderate strength, the above assumptions will not introduce
significant errors in the flow solution. The density, p, Is found from the speed of sound, a, through
the relation

p 2a21/(Y-)

where Y Is the ratio of sp~nMfin hP- . I turn, a cn bc tvr +id thiuugj, Lh energy relation

2 - H)u +v
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Here a0 is the stagnation speed of sound and u and v are the velocity components in the physical plane.
These are related to the components in the oircle plane by

rU rV (12)
hh (2

Wo see that the flow within the oircle cannot be co"uted if h is not known; the assumed initial shape
for the airfoil provides the initial estimate for h. i.. the limit of H. going to zero, equation (10)
reduces to Laplace's equation. Then, the solution for the flow within the circle is independent of the
mapping metric b, and It is given by Eq. (7).

The mapping Introduces singularities at infinity, but they can be removed by subtracting from the
potential its behavior in the far field. As discussed by Ludford," the solution in the far field is
made up of a uniform stream plus a circulatory component. The potential functions describing these terms
are known. Thus, we can define a reduced potential function.

G - *-q.(r+1)coa(wa)-E tan 1 [/If-7tan(w..)] (13)

where E is a circulation constant. This reduced potential is continuous and single valued overywhere.

At infinity (r-O) G-G., a constant that can be set at zero in direct (Neumann) problems, but which
must be determined as part of the solution in inverse (Diriehlet) problems by extrapolattng from the
interior of the flow field.

For the direct (analysis) problem, q. is usually set to unity and the boundary conditions demand
that v-O at the surface. The solution for the flow field is computed numerically by discretizing the
flow field in conservation form along a polar coordinate mesh. The set of difference equations that
approximates equation (10) is solved for the discrote values of the reduced potential, G, at the nodes of
the computational mesh by an approximate factorization multigrid scheme similar tc the one described by
Jameson." The value of the circulation conatant, E, ia determined from the Kutta condition, which
requires that u be finite at the trailing edge. Since h-O at the trailing edge, U must be made to vanish
at this point. In this direct problem the surface speed qo(s)u(s) is computed from the potential
function G.

For the inverse design problem the boundary conditions at r-1 are imposad on u rather than v. Using
the known functional relation between a and w for the current contour, the target speed distribution q,
can then be expressed as a function of w. Then, at the boundary in the ci:'ole plane we set uo-u(w) e ,al
to qO(S(w)). Of course, this would be true if h were the true mapping metric; in general, it is not.
Hence, the boundary is not necessarily a streamline of the flow. In othr woros. v Is not necessarily
zero at the boundary. The flow field Is computed subject to the boundavy condition uo-q (S(w)) at r-1 by
a-nuderical scheme identical to the one used for the direct problem. The Dirichlet boundary conditions
are Implemented b, integrating qo around the airfoil to find the reduced potential G at the boundary
points using Eq. (11-13). A constant of' integration G can be prescibed arbitrarily. The numerical
problem that has boundaries at both r-O and r-1 is welT posed since the value at the inner boundary, G.,
is determined as part of the solution. The circulation constant i determined by integrating u around
the full boundary. In general, in the Dirichlet problem there Is a net mass flow emitted from the
boundary. To allow for this, a source term o log r is substracted from the potential leading to a new
reduced potential, G, defined by

G - a olog r

The far-field boundary condition will then have the additional term

jlog1-M sin2(w.o;J

The source term has a role similar to that of the circulation term for the Neumann problem. The value of
o is determined by netting V equal to zero at the trailing-edge. The introduction of the source term
guarantees compatibility of surface and far-field boundary conditions during the iteration process. This
source term vanishes as the design process converges to its final contour.

.1 non-zero normal velocity v will, in general, be computed on the circle boundary. This can be used
to modify the original airfoil contour.

4. CONTOUR-MODIFICATION

A non-zero normal velocity v at the circle boundary implies that the actual streamline is (to first
order) rotated from the boundary by an angle of magnitude

6- tan0'1
-) (14)

The mapping of a new streamline contour, z, to the unit c.role is accomplished by a mapping similar to
Eq. (2)
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which Implies relations similar to Eq. (4) and (5). Letting

N
-Eo (T sin nw-gn0os no)
n-0

and A' A-An and B' Ii n Bn, it follows that

N

60 - 6e(u-)- E (A-sin nw-B' co nw) (15)n n

where

6C. (so1-C 60

60, and 
60
2N are the values of 60 at the two sides of the trailing edge point. Since 60 is known as a

function of w,Al and B. can be evaluated by a standard Fourier anlaysis of Eq. (15). The new components

of the series of the tranformation, An and- n can be formed. The new derivative of the arc length,

d;/dw, is calculated, In turn, as well as

dx co~s~ 5,k- --Lsine-r d dw dw

The actual ordinates of the new airfoil contour are then obtained %*y integration. This new airfoil
provides a-new approximation for the metric h and a new relation s(w), which are needed to set up a new
Diriehlet problem in the circle plane. This process can be repeated until a desired tolerance in the
maximum value of v/u is reached. At this point the tangential velocity is equal to the-total target
speed prescribed on the surface, and the target speed-will have been modified appropriately to satisfy
the constraints.

5. CONSTRAINTS IN INCOMPRESSIBLE FLOW

The question that must be asked at this point Is whether an airfoil solution exists for an
arbitrarily prescribed-speed distribution. For Incompressible flow, Mangler and Lighthill showed that,
in-fact, a solution exists only If certain integral constraints are satisfied by qo, and this can be
demonstrated as follows.

Since a lifting flow over a circle can be reduced to the non-lifting, symmetric flow-as shown in
Ref. 2 and 19, it is sufficient to consider the nonlifting case in order to simplify the discussion. The
mapping- betieen the z and c planes must have the form

Z + -n
n-0

if the flow in the far field is to remain unsealed. Here, the an's are complex constants. Therefore,

dz -nan(n+l)
n I - In

From Eq. (7), we see that

- ( 1 -2-)

Hence, combining the last two equations, we find that

dw - (I + j b~n 116)
dZ n-2

Since (dw/dz) - q0
e- 10

, it follows-that

log I!l - h' -n(17)

As pointed out by Lighthill and Thwaites, Iogjq /q.1 is-an analytic function In the domain outside
the circle (it fails to be analytic at stagnation points on the circle where q0 - 0). Therefore, It can
be-expanded In a Fourier series on the circle itself. However, from Eq. (17) we see that the series
cannot have terms of zero or first order. In fact, qo must be such that
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log (18)os W1 d- 0
S sin u

These are the three integral constraints that the prescribed speed distribution must satisfy for an
airfoil solution to exist. These three constraints have *risen from the requirements that the airfoil be
closed and from the Imposition of a value on the free stream. It can be safely assumed that similar
constraints exist also at supercritical speeds. The above discu~sion indicates that the prescribed speed
distribution should contain, in general, three adjustable parameters to guarantee that the constraints
way be satisfied. Thus, the surface speed distribution shovId be prescribed in the form

qo "F~sS~a~l'P2' P3} )9

where pl, p2, and pa are the three parameters that are found as part of the solution. For compressible
flow (H. A 0), Eq. 8) is no longer an adequate expression for the constraints. One must then formulate
alternative means of evaluating the parameters while still ensuring that the constraints are satisfied.
The particular functional forms chosen to Introduce the parameters will, of course, affect the class of
airfoil solutions that can be obtained. These will be discussed later.

-6. AN ALTEIRUATE-LOOK AT TIl1 CONSTRAINTS

In order to formulate a well-posed Inverse design procedure which would be valid at compressible
speeds, the nature of the constraints must be re-examined since the above-derived closed form expressions
are valid only for Incompressible flow. It Is logical to do this In the context of the computational
method that has been outlined. The two constraints that arose because of the required trailing edge gap
are of a geometrical nature. Hence, one can set up a procedure in which, by monitoring the trailing edge
gap size, the target speed can be modified in order to drive the gap's dimensions to its specified
values. The first constraint creates a problem because there Is no single, physical quantity that
reflects the constraint. This first condition Is a statement of "compatibility" between the prescribed
surface speed and the free-stream speed. If the latter Is also being prescribed, as is usually the case,
the surface speed prescription hds to be modified for the constraint to be satisfied. If the free-stream
speed is not specified, in the case-of Incompressible flow Its value can be found from Eq. (18). In the
absence of a closed-form expression, which would be valid at compressible speeds, the problem is to
define a-procedure whereby either the surface speed or the free-strea speed might be changed to bring
about "corpatibility."

Let us consider the Incompressible flow over a circle again. As mentioned earlier, i will be
sufficlent to consider the nonlifting symmetric flow. The general solution for the flow-on the outside
of a circle ox unit radius can be represented In the form

Nb
G-a o + a r cos u + I - cos no

n-1 r

N being a sufficiently large number.

This is-the most general solution-to Laplace's equation that yields a uniform free-stream flow In
the far-field (r H ). hence

b N b
(a -- ) o3 w - I n . cos no (20)
r I r 2 n-2 r *

and

I aG blN nbnS-- (a, )sin w - I sin no (21)

rr 2 n-2 rnflI

It follows that the total velocity

q - ( r - rO ) e'I

must be of the form
N

q a I - n .c (22)

In the-far field, as q - q.. Hence, a, - q. and

N
q q. - [ b, {-n (23)

- '

which reflects the result expressed in Eq. (17). Thus, If the-floi over the circle Is determined with
the condition that q - q(o) on the boundary - 1, we-see that when we expand qo(u) In a series

H
q o

(
o
)

o0 n 
n
an (241
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restrictions on Q, Immediately arise, echoing the constraints described by Lighthill and wangler. In
particular, we see that co - o_, the first constraint. Also, we see that c1 - 0, implyingtwo additional
restrictions on the speed, since c Is a complex constraint. For the rest of this section we will
concentrate on the first constant.

It is i.teresting to note that Eq. (23) can be-factored into the form
N

q - q i - bn (25)
n. n-

Since the first part on the-right-hand side of this expression represents the solution for the flow over
the unit circle, the expression In brackets formally gives the mapping Idc/dzl which generates the
airfoil corresponding to q-qo(w) (assuming qo satisfies the constraints).

At this point it should-be mentioned-that a proper speed distribution for an airfoil should contain
at least one zero corresponding to the leading edge stagnation-point, and two zeroes if the trailing edge
is not cusped. Hence, the zeroes of q should match the zeroes of the flow over the circle if the metric
is to be free of slngularities with the possible exception of the trailing edge.

In the procedure described in the previous sections, the-airfoil's contour is to be found by
successively modifying some starting profile. The modifications are-to be guided by the solution of a
Dirlchlet problem. Consider now such a Dirichlet problem In the case of incomp58ssible flow. Boundary
conditions are now imposed on the tangential velocity and can be expressed as - g(w) . Expanding
g(w) in a trigonometric series, one obtains

H
n (26)

r-I n-I n

A comparison of Eq. (26) and (21) leads to-N+1 conditions-for the constant a, and the N Fourier
coefficients bn. However, c' is identically zero since

fIG du- 0

0 B

Thus, there are-really only N-conditions, and a1 -- the term representing the free stream -- can-be
specified!

Having determined the values of the bus, the speed normal to the boundary- can'be found from Eq.
(20). The total speed on the boundary, as anywhere else in the flow field, must have the form given in
Eq. (22). Thus, the solution to the Dirichlet problec yiolds a flow in which the-free stream, and the
speed on an; closed path that can be drawn within the flow-field are automatically compatible; there is
no "first" constraint. Not all paths-are of interest, 1oweier. Only the contours-that pass-through
branch (stagnation) points of the-flow can yield airfoil-lik profilea. The location of the stagnation
points of the flow computed from th" aolution of the Dirichlet problem depends on the value assigned to
the free-stream term, a1 . Regardless of the 'slue assigned to a, an airfoil contour can be traced from
the stagnation-points, but the speed distribution on the contoun is .ot necessarily-equal to the one
prescribed, or even close to it. The flst constraint has teen removed at the expense of i'etainl.g
control over the speed on the airfoil, which Is an undesirable result.

If the circle boundary were to be-truly a streamline, G, ould be identically equal to the sought
after total speed. If the branch points of the-flow were to-be on-tho circle boundary, it would be
reasuonable- to-expect that the streamline passing through them world be "close" to the circle and-the
total speed-on the streamline-woule, be "clos

e
' to G The contou"-perturbation process described above

may have a chance-to work in such a situation. This "closeness" can be brought about by choosing a1 In
such a way-that the-branch points do fall exactly on the circle boundary. Since points-where G,, is
already zero are already specified, it Is natural to enforce these.points to be the stagnation points of
the flow. This is guaranteed by forcing Or to be zero at these two ;oints by appropriately choosing
vaiues for the free-stream and for the mass-flow term, a. Since the formulation already called for a to
be chosen in such a way as to make-Gr-O at the-trailing edge, the procedire just outlined has reinstated
the constraint between the free stream-and the prescribed surface speed. The advantage consists in the
fact that the constraint is now satisfied by making 0 -0 at the leading -9dge stcgnation point rather than
through an integral relation. This new approach to the constraints generates a profile with a speed
distribution that automatically satisfies the integral expression without invoking it explicitly. In
this new procedure, as in the class~al one, the free-stream speed can be kept at a specified value by
Introduo*ng f-ee parameters in the specified surface speed, as in Eq. (16); P1 in Eq. (16) can be
adjusted to return a, to its desired value.

In summery, an airfoil design procedure that satisfies the first constraint and is equivalent to the
Hangler/Lightnill mothod can be foraulated as follows. The design strategy calls for the computation of
a flow field about a circle on which the boundary condiions are that the tangential velocity u
(equivalent to %= in incompressible flow) Is set equal to the target speed distribution n(; -A) N-ere

-o.!....g , i t~"- 11,s vdiu closure). At convergence, u-must be equal to %. If we a'just hevlue
of P, in such a way that v - 0 at the point on the circle where u - 0, this point will to a stagnation
point for the flow. Hence, the streamline -representing an airfoil-like contour must pass through that
point. The speed distribution along that streamline is not equal to the target speed, buG it
automatically satisfies the free-stream-speed constraint. The mappingametrio, h, can then be updated as
described above. It Is worth mentioning, at this- point, that setting -v-0 where u-0 ensures that the
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ratio exrcssed in Eq. (14) remains finite at all times. With the new metric one can set up another
Dirichlet problem-that has a streamline passing closer to the cirole and'the speed along It will be
closer to the zarget speed. If one repeats this process until the circle itself becomes a streamline,
the speed distribution on the streamline-will then be equal to the specified target and will satisfy the
constraint. Henoe$ adjusting p1 in such a way that v - 0 at u - 0 at all times leads to the design of
the airfoil that corresponds to qo(w; p1), and the value of p, is the value that ensures satisfaction of
the free-stream speed constraint.

This technique for satisfying the constraint can be applied at supercritical speeds as well as for
incompressible flow. Th) constraints imposed by the trailing edge closure requirements can be accounted
for by monitoring the trailing edge gap during the iteration process and adjusting the two additional
parameters, p2 and P3 in Eq. (16).

7. ENFORCEMENT OF CONSTRAINTS

The discovery of a m'thod that ensures that the first constraint can be satisfied at compressible
speed opens the way to the formulation of ichemes whereby the necessary freedom can be introduced in tile
speed distribution. For the remainder of tais paper, it will be assumed that the target speed is of the
form

q . f (s;p1)[fo(s) + f2 (slp2) f(s;P3)] (27)

where fo(S) represents the ideal target speed distribution that, in practice, is usually a tabulated
function. The functions fl. f', and fi are introduced to modify the ideal target in order to satisfy
the three constraints. In general, it Is desirable to localize the effec. of fl, f2 and f so that the
resulting surface speed will be close to the ideal speed distribution, fe(s), over most of he airfoil
surface. Since in transonic flow it is not possible to relate p,. p2, and p3 to the three constraints in
closed form, a numerical search for the parameters must be made. The search .s-greatly facilitated by

choosing fl, f2, and f3 in such a way that each significantly affects only one of the constraints. We
would then have three-one-dimensional searches for p1 , P2, and pl. In Ref. 20 the sensitivity of a
designed airfoil contour to various changes in the target speed distribution is reported. These results
have guided the definition of f,, f2 , and f5 in Eq. (27). Three separate-schemes have been-tried, but
they hardly exhaust the number of possibiliRies and many more can be constructed.

Satisfaction-of the first constraint is guaranteed by adjustment of p1. By definition, fr causes a
scaling of surface-speed (q,). In scheme 1, we choose f1 - pl which results in-a scaling that is
uniform along the airfoil. In this case we could consider p1 as a scaling on either qo or q.. In the
latter case we would essentially have o6 floating, and i. would be determined as part of the solution.
As-discussed above, the value of p1 is-chosen to guarantee that the specified leading edge stagnation
point will truly be a branch point of the flow.

Control over Ay, the vertical separation between the upper and lower surface trailing edge points,
can be exercised by defining

f2" -p2 sin (lu ) - aS, (28)

Outside this range f2 is zero. Here, we are substituting-the ordinate o In-the computational plane-for
the arc length s. It is more convenient to use oi rather than a, and the formulation of the problem is
not affected by this substitution. The-function f3 is the hardest to define. The horizontal separation
between-the two trailing edge points, Ax, is affected-primarily by the location of the leading edge
stagnation point. As shown in Ref. 20, a small shift in this-stagnation point along the surface of-the
airfoil, on the order of 2% of the chord length, can-altee the horizontal gap by 5-6%. It should be
pointed out that a 2% shift in the stagnation point aloni the surface is hardly noticeable-when viewed as
a-shift along the chord. In order to maintain a loose coupling-among pl, p2 , and p3 , the shift must be
accomplished-withcut altering the local velocity gradients. This can be accompliahed-by-shifting the
functional dependence of q, on a locally, near the leading edge. Thus, we let

fs(s) - fo(St) - r(S)

with

a' - s - p 3h(s)

where

h(s) - [I-cos(!s(s-sT+2&s))] ST-26s s STbS

2 as

- *cos(L5 (S-0 45))] 3 sTsss 2
63

Elsewhere, h(s) is zero. The point s denotes the location where fr(s) is zero in the laadilng edge
region-and 63 is some appropriate-distance, typically 2.5% of the-total arc length. This form for f3
shifts-the leading edge stagnation point smoothxy without introducing any "wiggles" in the-target speed
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distribution and, in addition, has hardly any effect on the values of p, and P2. This form for f3 is
common-to all the three schemes we have tried.

A second scheme for modifying the target distribution uses a different definition for f2 in Eq.
(27). The expression given in Eq. (28) alters the target apeed distribution only on the lower surface of
the airfoil. It would, therefore, be unsatisfactory if we were-trying to design a symmetric airfoil. An
alternative form for f2 is

f 2 "P 2 11"w] S 01

(29)

This function symmetrically alters the magnitude of the speed in the neighborhood of the trailing edge.
In our computational scheme, the speed takes on opposite signs on the upper and lower surfaces,
accounting for the sign difference between the two parts of Eq. (29); W, is typically taken as W/3. A
third scheme is formulated by substituting for f, - 1| in scheme I the function

r + p. sin
2
( )

which concentrates the scaling in the front half of the airfoil.

Regardless of which scheme is used, the three parameters are adjusted periodically during the
solution of the Dirichlet problem that precedes each contour modification. At the end of every sweep of
the flow field, q. and a are determined by forcing v to be zero both at the leading edge-point where u is
zero and at the trailing edge. The factor p is then-adjusted to suale q. bauk to it& specified value,
and the flow field is swept again. The value of-the normal component of velocity at the leading edge
stagnation point, v, goes-to zero quie fast (due to the continuous-resetting of -pl). When v is below a
given tolerance (typically 10

- 
- 10 ), estimates are made of the values that A, and B,, the first-order

tsrms of the series in-Eq. (5), would have if -the airfoil were modified at that stage. These values-are
co.npared with the values they should-have for the airfoil to have the desired trailing edge gap
dimensions, as given by Eq. (5). The differences between the current and desired values, 6A and 6B1,
are then used to change p2 and pR, respectively. The change in p2 is made proportional to 61 and the
change in-p3 is proportional to (-8B1 ). Since p, is introducedas-a multiplier, a change in the surface
boundary-conditlons due to a-new p1 can be transmitted through the entire flow field by scaling the
entire potontial field. Using this procedure we can update p1 after each multigrid sweep of the flow
field without seriously affecting the convergence rate of the numerical scheme. This procedure -is not
possible with p2 and p3; therefore, they are jpdated infrequently. However, the method of false position
can be used to accelerate convergence of P2 and p3. The flow field is assumed to be converged when all
the residuals at all the flow field node points are below a specified tolerance, and v at the leading
edge-stagnation point together with 6AI and 6B are below their respective tolerances. At this point the
airfoil contour is modified and another Dirichlet problem is set up. There is no-need-to analyze the new
airfoil contour with this procedure. A direct analysis is -ade at the very-end of the calculation just
to check our results.

To ensure convergence of the design process, it is necessary to under-relax the changes to the
contour shape. Thus, only a fraction of the changes suggested by-Eq. (14) is-actually taken in the early
design cycles. After several contour modifications the-factor can be increased. The tangential velocity
u(w) at the boundary, which is interpolated from the desired qo - F(s), is also under-relaxed when a new
design cycle is started.

8. RESULTS

A considerable number of airfoil contours have been designed by the method over a wide-range of
speed (or pressure) distribitions including cases in which shook waves were present in the flow fielo.
All the examples that will be presented in this section have been computed on a mesh containing 192
points in the circumferential direction and 32 points in the radial direction. Five mesh levels were
used in the oultigrid sequence. In each case the angle of incidence of the designed contour was set at
zero. In the present formulation the angle of attack can be specified; different choices for the angle
result in different orientations of an otherwise identical contour within the given coordinate system.

A strong test of the system is illustrated in the redesign of the-Korn airfoil using as a target the
press)re distribution computed on the profile at 14, - 0.750, a-- 0.50. At these flow conditions a shock
is present in the flow-on the upper surface as ran be seen in Fig. 1. Using the distribution given by
the circles in Fig. 1 and using the NACA- 0012 airfoil as a starting contour (see Fig. 2), the Kern
airfoil is recovered exactly in about a dozen iterations of the-alrfoll shape. A-measure of the
convergence rate of the procedure Is given by Fig. 3 which gives the maximum value of Iv/u at eacii
cycle, The program was run through 30 cycles, but, usually, no changes In the shape-can be noticed once
the maximum value o1 Iv/uJ has been reduced below 0.01. The pressure distribution computed on the re-

-f~nd .cile !e-glvenl by them- 1^~1MId !IA In- Vig. 1, And- M 14% pntAally IdentInoal to tha npacified
target (the symbols). Obviously, since the target was a direct solution for the flow over a known
profile, it satisfied the three constraints of the inverse problem, and it should have generated-an
airfoil solution without need of modifications. The actual values computed for the three parameters were
(scheme 1 was used in this-example): P3 - 1.000023, P2 - 0.000040, and pa - -0.000668, all well within
the specified numerical tolerances. The slight differences near the shoc are due to the fact that
values for the target distribution-were computed-by central difference formulas at midpoints-of the mesh,
while the values associated with the recomputed profile-were computed at node points. The Kern profile
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is recovered exactly, without any "wiggles." In Fig. 4 the slope distribution of the computed profjle in
the leading edge region is compared with the values of the original contour. Even in the vicinity of the
shock, the redesigned profile Is as smooth as the original Kern airfoil, as can be aeen in Fig. 5. An
interesting exercise is to use the pressure distribution in Fig. 1 as the target for designing airfoils
at a free-stream Mach number other than 0.75. This was tried with free-stream Mach numbers-of 0.730 and
0.770. As the results of Fig. 5 and 6 show, the recompression through the shock implied-by the target

* distribution can no longer be achieved over a smooth profile. Thus, even though the "modified" target
distributions for these two cases differ only slightly (see Fig. 6) from the original target; the
designed airfoil profiles have dramatically different uppir surfaces. As Fig. 5 shuws, the profile
designed for H. - 0.710 has a convex (to the- flow) corner underneath the shock, while the profile
obtained for H. - 0.770 has a concave corner at that point. This is consistent with expectations. For

$ the H. - 0.730 case, the specified shock is too strong. The opposite is true for the case at H. -

0.770. The vertical extent of the supersonic regions in these several oases is of some interest as can
be noticed in Fig. 7. The corners for the designs in Fig. 5 are real features of the airfoil solutions

and are not due to numerical inaccuracies.

Evidence for the equivalence between the present design procedure and the one described for
Incompressible flow can be generated by trying to design a profile-using as a target speed the
distribution obtained by the analysis at a low Mach number of a known-profile, which sie will call q
multiplied by some arbitrary factor, p. Since q, automatically satisfies-Eq. 1!9), (pq ) cannot satisfy
the constraints. Straightforward application of Eq. (19) suggests that, for a contour to exist, either
q. must be scaled by the same-factor, or p must be scaled back to one. The numerical procedure described
in this paper accomplishes this same result as shown in Fig. 8. The Kern airfoil was analyzed at
M,-O.100, a-1.70 and the resulting speed distribution was scaled to provide a target. The scaling factor
was assigned a value in the range of 0.2<q,<2. As was expected, using the above-mentioned Scheme 1, the
multiplier was scaled back to one in each case. As can be seen in Fig. 8 the scaling is accomplished
almost entirely within the first design cycle -- before any airfoil updates. Also, as expected, the
resulting profile was the Korn alfoil.

Those examples demonstrate the robustness and self-consistency of the numerical scheme. The
remaining examples illustrate the use of the various schemes for satisfying the constraints in the design
of airfoils. Rarely, if ever, pressure distributions-with shocks in the flow-field are prescribed. At

supercritical speeds, "shockless" airfoils are usually the goal. A reasonable target might be the
distrihution deplcted by the-symbols in Fig. 9. The free-stream Mach number in this case is 0.800, and,
again, the exercise is to design a closed airfoil using scheme I to make-any necessary changes in the
target distribution. The modified target speed distribution is~given -by the solid line in Fig. 9.

The shift in the location-of the stagnation point should be noticed in this figure. The shift is

achieved smoothly and makes it possible to close the x-gap in the airfoil. The designed airfoil is
depicted in Fig. 10-along-with the computed pressure distribution. This pressure distribution is the
result of a direct solution of the flow field over the designed airfoil contour, and it agrees to three
decimal places with the pressure distribution that corresponds-to the target speed distribution (the
solid lInp in Fig. 9). This airfoil solution is obtained regardlessof the airfoil contour initially
prescribed to stbrt the Iteration-procedure. In Fig. 11 the designed airfoil contour Is compared with
four different starting shapes: the Korn airfoil, the HACA 0012, the NACA 0002, and, finally, a "needle"
-- two straight lines Joined at the trailing-edge and at the leading edge tangent to a semicircle of

radius equal to 0.25%-of the chord.

It is satisfying to note that the values of pt, p2 , and p3 are identical regardless of the starting
shape (i.e., the modified target speed distribution is the same in all cases). Apparently, by decoupling
the three parameters, we have ensured that only a single set of values exists that satisfies the three
constraints. It is possible that, if the-three parameters had been coupled, more than one set of values
might exist that would satisfy the constraints. Even though we have no formal proof of this, decoupling
appears to guarantee-a unique solution as well as making the search simpler and faster. The convergence
rate of the method for the various "starter" profiles is given in Fig. 12, which depicts the maximum
value bf Iv/uJ as a function of design cycles. Again, after 10-12 cycles it is difficult to distinguish
any changes in the airfoil shape. Typically, we run the code to a level where the maximum Jv/uJ is 0.001
or smaller. A converged solution generally requires 4-5 min. on a Cray-iM computer and about 20 min. on
the IBM 308: machine.

The pressure distribution depicted in-Fig. 10 appears to have very desirable features; in
particular, the "plateau" region on the upper surface suggests the absence of a shock. However, a very
large-drag (CD - 0.0232) Is present even at the design point. If we look at the Mach number contours in
Fig. 13, we see that, while there is no shock at the airfoil surface itself, a very strong shock is
present off the surface. The contours represent Increments of 0.01 in Mach number, and only contours for
vajues greater than-the free stream are-shown. At off-design conditions, the-shook reaches the
surface. Several authors have observed this feature. A-smooth recompression along the surface does not
necessarily mean that the flow field is shockless. Thus, the airfoil shown in Fig. 10 is impractical
because of its high drag.

A truly shockless closed airfoil is depicted in Fig. 14, along with the computed pressure
distribution (i.e., modified t.rget) and the-original, unmodified target. ?t.to the low computed drag (C
- 0.0005) of this airfoil. The computed isomach pattern in Fig. 15 shows that the flow over this aIrfoIl

is truly shock free, and at off-design-points only a weak shock develops. This case was computed using
scheme 2 escribed-above. It should also be noted that in this-case the-modifications-made to the ideal
target pressure distribution are considerably larger than those that resulted in the previous case. The
changes on the lower surface reflect mostly the effec of f2 , as given by Eq. (29). An example of an
airfoil designed using scheme 31is-shown in Fig. 16. Note, In-this case again, the very low value for
the drag and the considerable lift coefficient. The modifications to the ideal target that should be
noticed apart from the scaling are concentrated near the trailing edge.

A very Interesting-profile designed to an unusual pressure distribution is depicted in Fig. 17. The
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airfoil was designed for laminar flow (remember that the present method is purely inviscid) to a
distribution devised by Pfenninger' for M. - 0.766. It is only one of a series of aitfoils designed for
such purposes. The scheme used was scheme 1. Since the ideal pressure distribution was based on the
considerable personal experience of its designer, minor modifications were needed to generate the airfoil
solution. The computed Mach number contours are depicted in Fig. 18. Notice the shallowness of the
supersonic region as compared to its length. This airfoil exhibits very low drag- for a considerable
range of flow conditions around its design point.

As mentioned earlir, the method will generate airfoil contours of arbitrary trailing edge thick-
ness. The contour shown in Fig. 19 has a trailing edge thickness equal to 2$ of its chord. Like the
previous example, this represents an interesting design that, in addition to front loading, has a long
and shallow supersonic flow region. A final set of examples depicts airfoils designed at a moderate
free-stream Mach number (M. -0.675). All veje designed-to have a trailing edge thickness equal to 1% of the
chord. The two examples shown in Fig. 20 and 21 were designed to original target pressure distributions
that differed only in-the leading edge region. The resulting airfoils both have a substantial thickness --
maximum values are 12.5% and 13.7% of the chord, respectively. The contour in Fig. 22 is not as thick (11%
of chord), but it generates considerably more lift. The very shallow supersonic region present on this
profile at its design point is of interest in Fig. 23.

9. CONCLUSIONS

An inverse method for the design-of airfoils for superoritical applications has-been described in
this paper. The problem imposes constraints on the speed distribution to which the airfoil is-to be
designed. An effort has been made to illustrate the most elusive of the constraints -- the one relating
the target surface-speed to the free-stream speed -- and to interpret it within the context of the
numerical scheme presented. All the constraints on the speed are accounted for in our formulation. The
method is, therefore, well posed both theoretically and numerically. It is also quite-general in the
sense that the ideal specified speed distribution, represented by fo(s), is general, and an airfoil
solution will always be found by modifying-the target speed in order to satisfy the constraints. Also,
the initial airfoil contour needed to start the procedure need not be close to the final contour to
achieve convergence.

The particular forms proposed for fl, f2, and f are by no means exhaustive or even necessarily
best. They do, however, provide the freedom needed ?o satisfy the constraints-automatically, without
user intervention, and to introduce only a loose coupling among their respective multipliers - making
their evaluation simpler and computationally cost-effective. Other forms for f2 and f3 are, of course,
possible, although the search for p. p2 and P3 might be more difficult. Most alternative formulations
for introducing-free parameters will probably require a multidimensional search for the parameters.
Techniques exist, however, for optimizing this search. Also, following the approaches of Arlinger,
Strand, and-Polito, it would be possible to develop formulations that would-keep changes to a minimum.
Additional free parameters could conceivably be introduced to prevent crossovers of the upper and lower
surfaces of the airfoil, a-possibility not ruled out by the present formulation. In its present form,
however, the approach presented is a-reliable and efficient method for tne design of airfoil profiles of
given-trailing -edge thicknesses at transonic speeds.
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SUMMARY

An airfoil design procedure is described that has been incorporated into an existing 2-D Navier-Stokes airfoil
analysis method. The resulting design method, an iterative procedure based on a residual-correction algorithm, permits
the automated design of airfoil sections with prescribed surface pressure distributions. This paper describes the inverse
design method and the technique used to specify target pressure distributions. It presents several example problems to
demonstrate application of the design procedure. It shows that this inverse design method develops useful airfoil
configurations with a reasonable expenditure of computer resources.

NOTATION

a. speed ofsound
CL airfoil section lift coefficient
CM1  airfoil section moment coefficient
Cp local pressure coefficient
CpO pressure coefficient at location of peak Mach number
Cprg trailing edge pressure coefficient
Cptc target (t) or computed (c) pressure coefficient
e total energy per unit volume
If boundary layer energy form parameter
I identity matrix
k thermal conductivity
K coefficient in generalized recovery dstribution equation
Me peak Mach number
M2  Mach numberaft of shock wave
MI, frees'ream Mach number
n coefficient in generalized acceleration region equation
p surface pressure
PO pressure at peak Mach number
P2  pressure aft of the shock wave
q heat transfer rate
q0 computed speed distribution
qt target speed distribution
Re Reynolds number
S aerodynamic surface ordinate value
S. airfoil surface length measured from stagnation point
so location of peak Mach number on airfoil surface
t time coordinate
T temperature
TE/c trailing edge thickness-to-chord ratio
u instantaneous x component of velocity
v instantaneous y component of velocity
x,y cartesian coordinates
(P coefficient in generalized recovery distribution equation
A shock strength effective wedge angle
At, specified time-step factor
y ratio of specific heats
cE artiicial dissipation coefficient, explicit factor
cl artificial dissipation coefficient, implicit factor
p coefficient of dynamic viscosity
PR roughness parameter for transition criterion
PT turbulent eddy viscosity
p density
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T shear stiess
, q coordinates in transformed plane

1. INT.RODUCTION

The aerodynamic design of aircraft components is often carried out by means of ore of the following four approaches.
a) "cut and-try" analysis, b) indirect methods, c) optimization techniques, and d) inverse design techniques. The cut-and-
try approach consists of multiple applications of direct aerodynamic analysis methods. The design engineer specifies a
geometry, and then uses the computed flowfield to guide further changes to the geometry definition. This approach to
acrodynamic design is time consuming, and usually requires considerable expertise to produce optimum configurations.
Unlike the cut-and-try method, the latter three design techniques are far more automated, requiring fewer "ungineer-in.
the-loop" interactions to achieve specific design goals, These automated design methods can reduce the overall
engineering effort and calendar time for developing aircraft, components and configurations that have favorable
aerodynamic performance or aerodynamic interference characteristics. A variety of different analytical and numerical
design algorithms has been developed, and Sloof has summarized a number of the mostsuccessful methods in Reference t.

Automated design methods of the "design-to-pressure" type are normally used to generate aerodynamic geometries
that have favorable surface pressure distributions at given freestream couditions. For example, high speed aircraft
lifting surface geometries that generate "shock-free" or "weak-shock" flow fields are usually sought in order to minimize
wave drag performance penalties. Obviously, the use of these automated design methods requires that the
aerodynamicist can specify, a priori, the desired pressure distributions for a particular application.

By far the majority of aerodynamic design procedures are based upon potential-flow Computational Fluid Dynamic
(CFD) methods.l,2-6 Although it is likely that potential-flow- design procedures will continue-to be used as the
"workhorses" in industry due to their reasonable computer-resource requirements, there is now an increasing interest in
developing similar design procedures that ube higher-order CFD methods such as the Euler equations 6 -8-and the
Reynolds-averaged Navier-Stokes equations. 9 If used during the design process, these higher order CFD methods help
the aerodynamicist to account for the occurrence of rotational flow effects, vortical flow field structures, and a number of
significant viscous effects such as flow separations and strong shock/boundary.layer interactions.

In Reference-I 0, Garabedian and McIadden described an inverse aerodynamic design procedure based on a residual.
correction algorithm Their design method, which we will refer to here as the GM method, can be used to generate
aerodynamic surfaces with prescribed surface pressura distributions. They demonstrated their design method-by
incorporating it into a 3-D, compressible-flow, full potential equation (FPS) aerodynamic analysis code.

In Reference 1t, Malone et al presented a modified Garabedian McFadden(MGM) residual-correction design
algorithm that removed some limitations of the original GM- technique. These authors applied the new MGM design
method, also using FPE aerodynamic analysis codes as a basis, to airfoil, axisymmetric nacelle inlet, and 3-D nacelle inlet
design problems Most recently, Hazarika and Sankar 12 used an-FPE CFD method to apply the MGM procedure to the
design of blended wing-body configurations.

This paper describes the first use of the MGM residual-correction design algorithm coupled with a 2-D Navier-Stokes
solution procedure. It-describes the 2-D Navier-Stokes computational procedure, the MGM design algorithm, the
implementation of the design procedure, and the technique used to define target pressure distributioqs, and also presents
the results ofseveral sample design problems.

2. NAVIER-STOKES SOLUTION PROCEDURE

2.1 Mathematical Formulation

The two-dimensional Navier-Stokes procedure used in the present work- was originally developed by Sankar and
Tang,13 and later extended by fluff and Sankar.14 Their method solves the Reynolds-averaged form of the full Navier-
Stokes equations, which are given below for a cartesian coordinate system,

Qt + Fx +Gy= Rz+Sy (1)
where

Q = I p, pu, pv, e IT (2a)

F = [pu, pu2 +p, puv, u(e+p) IT (2b)

G = f pv, puv, pv2+p, v(e+p) IT (2)

R = [0, Txxz zy, ut., +--y - q IT (2d)

S = [0,Tzy, %y, uc1 y +_vZyy - qy IT (2e)

rxr =-213 p 2 uz - Vy) (20
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Tyy = 2/3p(2vy - u.) (2g)

Txy = P (Uy + vX) (2h)

q. = - kTx (2i)

qy = - kTy (2j)

p = (y- 1)[e- .5p(u2 + v2 )] (2k)

Ir, Equations I-and 2, [QI is the-vector ofconscrved flow variables. 're vectors (F] and [G are the inviscid flux
vectors in the x and y coordinate directions, respectively. Also, the vectors [R] and [S) are the viscous flux terms in the
corresponding cartesian coordinate directions.

Equations 1 and 2 are solved in a generalized, body-fitted coordinate system, after the equations are first non-
dimensionalized in a manner consistent with that of Reference 15. That is, the time coordinate is scaled by li/a,where I is
an arbitrary reference length (here taken a, I = 1). The coordinate dimensions are likewise scaled by I. The fluid density
is scaled by p., while the cartesian velocity components are each scaled by a.. The energy and the fluid pressure are both
scaled by the term, pa 0

2. Finally, the vicosity, p, is scaled by its freestream value, p.

Then, aftr the appropriate coordinate transformations have been performed, Equation I can be rewritten in a
strong-conservation form as follows:

Q, +F t + Gn = M. Re- I(Rt + S) (3)

where the vectors, Q, F, G, R, and S are transformed quantities, given by:

Q = QJ (4a)

F = (4Q + F + 4YG)!J (4b)

G = (qtQ + nhF + qyG)/J (4c)

R = (4tQ +-4,R-+ 4yS)/J (4d)

S- (qtQ + %R + qyS)/J (4e)

= (x, y, t) (40

q = q(x, y, t) (4g)

and the Jacobian, J, is given by

J = Wly - qJy (4h)

2.2 Numerical Solution Procedure

The techniques used to solve Equation 3 are given in References 13 through 15, and readers interested in specific
details should refer to those publications. flera we present only a brief description of-the Navier-Stokes solution
procedure

The NaoAer-Stokes system of equations given by Equation 3 is solved on a-structured mesh by means of a finite.
difference technique. The system of equations is integrated in time with the implicit Beam.WarmingIS-AD[ algorithm.
Second-order finite-difference expressions are used for spatial derivatives, while first-order differences are used for
temporal terms. A combination of second- and fourth-order artificial dissipation is added for numerical stability. Then, if
we let ()n represent a quantity evaluated at the nth time level, the resulting factored equation can be expressed as follows:

I + At (OA - eJ-16kkJ)][ I + At (8,1B - cjJ'8,,J) Aqn+l = Rn (Sa)

where

Rn = [-(BFn + Gn) + SkR n + ,Sn + Dn LAt (6b)

D, = cE J'1St[kk(QJ) + Bqqq(QJ) I A44 Ar (5c)

A =F'Q 1 (58)

B =dGlaQ (5e)

Aqn+t= Qn+1 _ Qn (50
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The Navier-Stokes code13 that was developed to solve Equations 5 can be used as a time-accurate procedure, or as a
variable time-stepping algorithm to speed calculations where a steady-state !,olution exists. For time-accurate
calculations, the value of At is held constant throughout the computational mesh For computations that are not time-
accurate, the value ofAt is set proportional to a spatially variable quantity, Atv,where

At =At-(I.0 + (abs(J))5)-l (6)

Finally, some observations are made about the manner in which several of the terms are modeled in the present
solution procedute The artificial dissipation terms used on the implicit side of Equation 5a are second order so that the
tridiagonal ADI formulation will remain unchanged. The explicit dissipation shown in Equation 5c is a-blended
combination of second- and fourth-order terms. The contribution of each of these terms throughout the computational
mesh is controlled by a pressure-gradient switching function devised by Jameson and described in Reference 15. And, as
indicated in Equation 5b, the procedure models the % iscous stress terms in an explicit manner by keeping these terms on
the right hand side of the equation This explicit treatment of the viscous terms reduces the computational effort requirid
and normially provides stable calculations for moderate. to high-Reynolds-number flows.13

2.3 Turbulence Modeling

For the present work, the Baldwin-Lomaxl7 algebraic eddy viscosity model was used to simulate turbulent flowfield
effects In this model, the eddy viscosity, PT, replaces the dynamic viscosity, p, given in Equations 2f through 2h. Values
of PT are then computed throughout the mesh with a two-layer formulation. This-formulation is related to the Cebeci-
Smith turbulence model, but does not require an accurate determination of the boundary-layer edge location. A complete
description of the turbulence model formulation is given in the cited reference.

2.4 Computational Grid

The computational grid used in the present application is a C-Grid tWpology. The grid is generated algebraically
with the sheared-parabolic technique ofJameson.13 An example of this type ofcomputational mesh is shown in Fignre 1.
For the present design applications, this type of algebraic grid generation procedure is desirable because it is extrenmely
fast and computationally efficient.

NOT TO SCALE 6 CHORDS j
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L E ~A R F O IL E O R
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Figure 1. Sheared Parabolic Grid

2.5 Boundary Conditions

The present solution procedure treats the boundary conditions in an explicit manner, assigning them values at each
iteration after the flow variables have been updated in the interior of the computational domain. Then the boundary
conditions-applied at the outer edges of the computational domain are divided-into three different regions. the airfoil
surface, the wake, and the freestream boundary.
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At the airfoil surface, the velocity components are set to zero for viscous flow calculations. In addition, the density
and pressure are extrapolated from values at interior mesh points. The extrapolation for pressure is obtained'from a
second-order expression through the use of a ap/Bn = 0 criterion. Then the energy values at the airfoil surface are
computed with the updated surface values of velocity, density, and pressure. Along the wake cut, values of density,
velocity, and energy are averaged across the cut by the use of values just above and below the boundary points. And
finally, at the outer boundary, freestream conditions are assumed, so that Aqn+ I is taken as zero along this boundary.

3. MGM DESIGN PROCEDURE

The MGM design method can be classified as a residual-correction technique, in which the residuals are the
difference between the desired pressure or speed distribution and the computed distribution. Over the past decade a
number of residual-correction methods have been developed, such as the "wavy-wall" approach of Davis.1 8 -The methods
differ primarily in the manner in which changes in residual are related to changes in surface shape. The MGM algorithm
itself consists of an auxiliary PDE that is solved for incremental changes in surface coordinates during each design cycle.
The final aerodynamic shape is approached in a stepwise fashion through a cyclical iteration between the flow solver and
the MGM algorithm.

3.1 Mathematical Formulation

For two-dimensional configurationi. the MGM auxilliary equation is given by

FoSt + FISxt + F2Sxxt = Q2 + F3 Q%2 (7)

where the coefficients F0, F1 , F, and F3 are constants chosen to produce a stable iterative process, and Q2 = residual =
qL2 - qc2 As qc approaches qt, the right-hand side o. Equation 7 vanishes, and the aerodynamic surface stops varying
with time, t.

Figure 2 shows how the MGM algorithm is typically incorporated into existing flow solution procedures, The
computed surface velocities are normally obtained from partially converged numerical solutions to the flow equations
under consideration at a given value of time, t. The flow equalions may be solved in either a time-accurate or variable
time-stepping manner Note that the time coordinate in Equation 7 is not equivalent to the time coordinate in the flow
solver, but rather is a psuedo-time coordinate used to interpret the PDE as an expression relating a change in coordinate
value, S, to a change in the residual, Q, as follows:

St = ASAt = AS

where we have chosen At 1. Equation 7 can then he written as:

FOAS + F,(AS), + F2(AS),, = Q2-+ F3 Q,2 (8)

NAVIER-STOKES
ANALYSIS PROCEDURE

I---------------------------------------- -------------------- *
1 BASELINE I
I GEOMETRY COMPUTATIONAL PARTIAL Its

START ' AND FLOW GRID FLOW CONVERGED? STOP I
CONDITIONS f GENERATION -SOLUTION-!-- ---- -----.. ...- --

v "S
r---------------------------------- ---

TARGET IGENERATE NEW S OVE COMPUTE
PRESSURE I GEOMETRIC -- FOA IR < A -Q2

DISTRiBUTION I SHAPES_+ / I sHP  LI J_; I
---------------------------- ----------------

MGM DESIGN PROCEDURE

Figure 2. Implementation of the MGM 2-D Inverse Design Algorithm

The present inverse design procedure is formulated in a-manner similar to that of the original GM scheme, but with
several !mportant differences. In the MGM method, the auxiliary equation is solved directly in the physical domain,
rather than in the computational domain, as was done in Reference 10. Additionally, whereas the GM method was
recom-nendee for use only on a portion of the airfoil surface, excluding the leading and trailing edges, and then only with
an increase in the airfoil thickness away from some thinner starting configuration, the MGM design algorithm was
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developed as an airfoil design method through which arbitrary changes to the- complete airfoil geometry could be
generated, including situations where modifications to the leading-edge shape are required. This capability helps to
eliminate the need for a starting configuration that is close in shape to the final designed airfoil shape.

A further difference is shown in Figure 3, where the surface perturbations generated with the MGM procedv-.- are
interpreted as changes in the coordinate direction perpendicular (y di~ecticn) to the longitudinal axis of the geometry (x
direction). This choice for the movement of the surface coordinates (which differs from the original GM method) leads to
smoother leading-edge geometry and eliminates chordwise stretching of the airfoil.

AS AS AS
AS

AS AS AS AS

a. Original Garabedian-McFadden Method

AS AS AS AS

ASSAS AS AS AS

b. Modified Garabedian-McFadden Method

Figure 3. Schematic of Geometry Perturbations for Original and Modified (MGM) Design Algorithms

3.2 Numerical Solution Procedure

We solve the auxiliary PDE by writing finite difference expressions for each term of Equation 8. The computational
grid used to solve this equation is the same grid-used for the fluid-dynamic equations, which,for the present Navier-
Stokes solver, is an algebraically generated C-grid topology (Figure 1). Of course, Equation 8 is solved-only along the
airfoil surface, so that only the grid-line clustering in the x or streamwise direction is of importance.

Then, under the assumption-that there are a total of N computational points on the airfoil surface, Equation 8 is
written for each of these points, i, where 1 < i < N. A typical equation evaluated at the ith point on the surface is

AjAYi+ + BiAYI+ CiAYI.1 -= R (9)

Here the coefficients Al, BI, and Ci are evaluated by means of standard finite difference expressions, and AYi is the
incremental change in surface coordinate, AS, at the ith computational point. The use of-the Y coordinate here results
from the direction chosen for incrementing the airfoil surface. First-order, accurate, spatially upwinded derivatives are
used to discretize the (AY)1 terms, while second-order accurate expressions are used to model the (AY)xx terms.

For points on the airfoil upper surface, the following expressions are obtained:

Al = - 2F2/((xl+l - xj)(Xi+1 - xi-t)) (10a)

Bi = F0 + F5 /(xj - x1.1) + 2F7/((xi+1 - xi)(x i - xi-1)) (10b)

- III(xi - x1.) - 2F2 t(tx - xi-i)(xi+s - xi-1i)) (lOc)

Ri = q s2 + Fe(Qe - Qi re) (dvd)

For points on the airioil lower surface, similar expressions are derived:
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Al = - Ft/(xi - xj+ 1 ) - 2F 2/((xi+i - xi)(xi+t - xi-0) (ha)

B1 = Fo + F11(x - xi t) + 2Fr,/((xi+s - xi)(xi - xi-1)) (lib)

Ci  - 2F 2/((xi - xi-_)(xi+! - x1_1)) (0c)

Ri - Q.2 + F3(Qi - Qi+I) (lld)

Since Equations 10 and 11 are written in physical coordinates, the finite difference expressions are normally derived
for non-uniform grid-point distributions in the x, or streamwise, direction. Hence the difference terms in the
denominators are not usually equal to each other. This formulation will be referred to here as "Design Option No. L"

During the derivation of Equations 10 and 1I, the change in sign between slope and curvature is accounted for so
that the coefficients Fo, F1 , and F2 are assumed to be positive constants. That is, during consideration of the appropriate
proportionality to take between the slope and the source term, t(AS)x - Q, F1 should be positive (locally) if (AS), and Q
are positive. However, for the curvature term, (AS)x1 , for the case wherc the airfoil upper surface has a positive value of
the source term, Q, the airfoil should be thickened locally. This leads to a negative curvature (increase in thickness on the
upper surface) and a negative F2 term, so that the product, F2(AS)xx, will have the same sign as Q. The opposite
observation is true for the airfoil lower surface. This change in sign for the curvature term is accounted for in Equations
10 and 11 so that the factor F2 is also considered a positive number.

Special treatment is used in the evaluation of Equation 9 at the leading edge, where an ambiguity arises as to the
direction in which to apply the upwind derivatives, especially for non-zero angle-of-attack conditions. To eliminate this
problem, the leading edge point is constrained to move as the average of both the upper and lower surface points located
just downstream of the leading edge point. This constraint is treated implicitly by the replacement of the coefficients in
Equation 9 with the following expressions

Ai - 0.5 (12a)

Bi = + L0 (12b)

Ci = - 0.5 (12c)

Ri = 0.0 (12d)

Thus, the leading edge is free to translate vertically, allowing for relative angle-of-attack adjustments to occur naturally

Equation 9 is evaluated at each point, i, around the airfoil surface, leading to a system of equations with N
unknowns, the AY values. Note that at each point on the aerodynamic surface, AYi is coupled to values at neighboring
points. The resulting equations form a tridiagonal system that is solved for values of AY by means of the well-known
Thomas algorithm.19

After Equation 9 is solved for a value of AYt, the new surface coordinates are obtained from the relationship

Yi
n

ew = Ytold + AYi, for i = 1 to N (13)

This completes one design cycle.

4. IMPLEMENTATION OF DESIGN PROCEDURE

The MGM design procedure has been incorporated into the previously described 2-D Navier-Stokes procedure. The
resulting computer program is referred to as the MGM2D code. One of the desirable features of the MGM residual-
correction algorithm is that relatively few changes to-an aerodydnamic analysis code can convert it into an
analysis/design procedure. In this respect, the MGM algorithm is similiar to optimization methods used for aerodynamic
design,2O in that the existing aerodynamic analysis method is treated very much like-a "black box." Several of the
computer program features are discussed in the following paragraphs.

4.1 Trailing-Edge Crossover

The present MGM2D procedure permits the design of complete airfoil surfaces, including the leading-edge and
trailing-edge regions. However, some choices of target pressure distributions may lead to trailing-edge crossover, and
hence to an unrealistic configuration. Therefore an artifice is used in the MGM2D code so that the trailing edge thickness
ran be controlled by the program user. If the geometry is driven to a "fish-tail" configuration (trailing-edge crossover), a
linear wedge is removed from the airfoil section such that the resulting trailing-edge thickness equals a user determined
value. In applyingthe wedge technique,surface modifications are mdde equally to both the upper and lower surfaces.
These modifications are linearily varying from zero at the leading edge to a maximum of one-half the desired trailingedge Lmicnes atie airroil trimg t~du. u,v ruaov-L Um~t L triiz tal OLZiUiI .uf,, **.*., 5 , ......

produced by the MGM algorithm, It has been demonstrated that this technique can give some measure of control over the
potential manufacturability of airfoil configurations generated by automated design procedures.21



4.2 Calculation of Target Velocity Distributions f -

Previous FPE applications of the MGM design procedurell used an expression for q2 as a function of Cp that is
derived from isentropic flow relationships. This expression is

q2 = (1 - [(Cp((y - 1)/2)M.2+ t)
(
Y
- t

y) - 11/2M.2) (14)

Equation 14 is also used in the present Navier-Stokes design method to convert, computed and target surface
pressure coefficient distributions into equivalent velocity distributions. However, these are non-physical velocity
distributions, since the numerical boundary conditions used in the present numerical formulation are actually u = v = 0.
Nevertheless, the "psuedo.velocity" function given by Equation 14 has proven to be effective in the current applications of
the MGM inverse design procedure. That is, the airfoil geometry perturbations computed during each design iteration
are in the correct direction to generate either increases or decteases in local velocity as dictated by the source term, Q.

In addition to Equation 14, an alternate function has been used to convert Cp distributions to q2 distributions. This
function is obtained from Equation 2k through the use of the definition of pressure coefficient and the boundary condition
ap/an = 0, The resulting expression is given by

q2 = 2p[ e - (.5(y- I)M.2 Cp + 1)(y(y- 1)) (15)

where the quantities a and p are evaluated along the first grid line above the airfoil surface. The velocity distribution
given by Equation 15 is then considered to be a physical velocity evaluated just above the surface of the airfoil.
Preliminary comparisons of airfoil designs generated with cither.Equation 14 or Equation 15 show little difference in the
convergence rate of the design algorithm. However, this alternate expression is described here for the sake of
completeness.

4.3 Alternate Difference Expressions of the Auxilliary Equation

Near the airfoil leading edge, computational grid points are clustered to permit accurate modeling of the rapid
changes that occur in flowfield properties in this region. The use of these non-uniform, physical, x-coordinate spacings in
the denominators of Equations 10 and 11: therefore leads to large values of the A,, 13j, and C1 coefficients near the airfoil
leading edge. The coefficients in these equations are often of the order of 106 or 107, whereas the residual terms, R,, are of
the order of 10.1. Consequently, the solution obtained for Equation 9 tends to produce surface perturbations, AY,, that
modify the rearward portion of the airfoil more rapidly than the forward portion, regardless of the local magnitude of the
source term, Qi.

Ofcourse, for many applications this characteristic may be perfectly acceptable. However, to speed convergence of
the design procedure-for cases that have converged -everywhere except in the-leadng-edge region, an alternate
interpretation of Equation 9 is used. In the alternate approach, the auxilliary equation is considered to be solved in-the
computational domain where thegrid spacing is uniform-and equal to-unity-(&, = Ai = 1), but the correction to the
airfoil surface is still applied normal to the airfoil chordline. With this option, referred to here as "Design Option No. 2,"
the individual left-hand-side terms of the tridiagonal matrix are of the order of unity, The resulting surface corrections
that are computed tend to be maximum wherever the source terms are greatest, including the leading-edge area when the
source terms in that region so dictate. Experience-to date with the design method indicates that the nonuniform grid
spacing option should be used initially, followed by the uniform spacing option to accomplish final surface modifications
when required.

4.4 Design Convergence Considerations

As-in other iterative inverse-design methods or design procedures based on optimization methods, formal
convergonce criteria are somewhat arbitrary. That is, the design engineer usually decides case by case how close the new
airfoil must come to achieving the target pressure goals. Also, as mentioned previously, the target pressures themselves
may not always produce a manufacturable airfoil geometry. For these reasons, the design engineer should be able to
monitor the progress of the design method while it is generating a new airfoil shape.

The MGM2D code ha been structured to facilitate its use as a multistep procedure, allowing the design engineer to
monitor the results of each step before proceeding with a-3ubsequent computer submittal. Of primary concern to the
engineer are data that measure the "closeness" of the current computed pressures to the targets. Therefore the following
corputer program output is provided at user-determined intervals:

a) location and value of the maximum source term, Q
b) computed and target Cp values corresponding to maximum Q
c) average Q value around the airfoil surface
d) average Ai2p = ,ba ( Cpt- Cpc) around the airfoil surface

In addition, the distributions of x/ci, Q1, AYI, and Y1, together with values of computed and target Cp's, are displayed at
.ach nmlntntion grid nointon:the airfoil surface.

The MOM2D user-can also control the maximum number of iterations per program execution; the number of ADI
iterations between surface geometry updates, and the maximum value of AYI permitted along the airfoil. The importance
of the first item mentioned is obvious. The second item allows the user some measure of control over the accuracy of tWe
computed Cp values. Each sequence of ADI iterations defines one design cycle, and the more iterations used per design
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cycle, the better will be the approximation of Cp, for the current airfoil geometry. The latter item permits the program
user to control the speed of the design process by limiting the magnitude of the airfoil surface updates. This control can
also be used to limit any possible adverse effects that might arise from the inadvertent use of inappropriately low values
of Fo, F1 , F2, or F3.

5. TARGET PRESSURE SELECTION

One approach to selecting an appropriate target pressure distribution is described in Reference 22. This method is
incorporated into a computerized-aerodynamic design and analysis system called ADAM. The approach taken in the
ADAM transonic airfoil design methodology is to assume generalized equations for the target velocity distribution along
the perimeter of the airfoil. Advantages stem from the fact that there exists a series of expressions with a small number of
coefficirnts that may be varied to determine the velocity distribution that will best satsty the lift, drag, and pitching
moment requirements at the design point conditions. These parameters may be systematically varied to produce families
of velocity distribution curves from which the best velocity distribution to satisfy the design requirements may be
selected. This approach can significantly reduce the effort required to determine the appropriate input to an inverse
design code.

5.1 Velocity Distribution Equations

The transonic design method evaluates families of velocity distributions to determine which distribution on the
airfoil will best satisfy the performance requirements. On the upper and lo,-er surface of the airfoil, the velccity
distribution is divided iito an acceleration region with one equation, a deceleration region with a second equation, and a
shock pressure jump between them if the flow in the acceleration region becomes sonic. These three regions are indicated
schematically in Figure 4.

ACCELERATION SHOCK DECELERATION
REGION PRESSURE REGION

JUMP
MACH MoJUMP

NUMBER,
M Cpu

! 
I ,

so STE
SURFACE- DISTANCE, S

Figure 4. Parametric Equations Define the Mach Number Distribution along the Surface oi an Airfoil

5.2 Acceleration Region

The pressure distribution in the acceleration region is of the form

Cp = Cps + (Cpo - Cps)[1 -( 1 - S/So)n (16)

where

Cp,-= [ ( 1 + 0.2 M2 )72 - 11/0.7 M. 2  (17)

As Figure 5 shows, increasing the value of n in this equation drives the Mach number to a rooftop distribution, and
allows for airfoils with different nose radii.

5.3 Shock Pressure Rise

If the peak Mach number, Me, is greater than one, a shock will form at the start of the pressure recovery. Yoshiara23

indicates that the pressure behind the shock on an airfoil may be estimated by a value that is-halfway between the
piessure .ssociated with sonic flow behind an oblique shock and an oblique shock detachment. Then an effective wedge
angle canbe estaolishcd for the pressure rise through the shock. The wedge angle is

A = 0.5(A + Amax) (18)

Using small angle assumptions (M0 close to 1.0), the sonic wedge angle may be approximated 24 by

A*= 0.296(-Mo
2 -1 )- 2/Me2 (19)
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Figure 5. Effect ofn on Acceleration Region Distribution

and the detachment wedge angle by

Anx= 0.3208( M,2 -1 )3/2/1M 02 (20)

The pressurc rise through the shock is approximated by

P2/Pt = 1 + yj%21A/j + yM02jI-4j(y+1)M64 -4p2)A2I4

+ yo-7M0 2[(y+ 1)2MO8/32 - (7+ 12y -3y2)MO6I24

+ 3(y+ 1)M0414 - M02 + 2/31A3 +., (21)

where

P = (MO2 - 1)1/2

and the Mach number behind the shock wave as a function of the wedge angle can be determined by

M2 =(Mo2 (6P + 1) - 5(Pj2 - )l / P(P + 6) (22)

where

Pj= P 21aI

5.4 Deceleration Region

In the deceleration region, the Mach number is of the form

M =M211 +-K(S, - S,)/(1 - SO)]-1 (23)

This equation was developed by F. X. Wortmann 2 5 to produce a constant form parameter in the turbulent boundary-layer.
Notice that the parameters S0 ,ep, and K may be varied to produce an infinite number of velotity distributions. In Figure 6
the value of 4, is varied to produce a family of'pressure recovery distributions.

The pressure distribution on the surface as a function of the Mach number is

Cp WI! + 0,2M. 2 )I( + 0.2M2))7/ - 1IM.2 (24)
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Figure 6. Effect of p on Pressure Recovery System

5.5 Integrated Performance Results

The pressure distributions on the upper and lower airfoil surface may be integrated numerically for lift and pitching
moment on each surface:

CL- C S-JO CpdS- I CpdS (25)
PIE 0S

O

and

CM = (CpS- 0.25 Cp)dS+ (Cp S - 0.25 Cp)dS - 0 .2 5 Cpm (26)

The friction drag is calculated by means-of the Squire-Young drag method in conjunction with the Walz 26

compressible boundary layer theory. The Squire-Young drag method can be expressed as

CD = 20Tg (VTEr V,)A (27a)

where

A = (tITE + 5)12 (27b)

The Walz boundary layer method is also used to calculate the separation location. The- transition location is
determined by a method of Eppler 27 that allows the effective roughness of the surface to be varied. The transition
criterion assumes that transition has occurred if

In Re0 > 18.4 H32 - 21.74 - 0.36 (PR - 1) (28)

In addition a capability to set-the transition point at or before a given location is available.

5.6 Perturbations to the Pressure

The pressure distribution on the upper and lower surface of the airfoil can be defined by five parameters through the
use ofthis method However, in the design of airfoil sections with practical leading and trailing edge shapes, the simple
pressure distribution produced by this method may have to be perturbed slightly to generate realistic input values. One
area ir which perturbations to the basic pressure distribution may be important is the trailing edge region. Without
viscous effects the pressure at the trailing edge would recover to the stagnation pressure. However, this pressure rise is
alleviated by the growth of the boundary layer as it nears tha trailing edge of the airfoil. The pressure distribution in this
area usually experiences a small rise. Figure 7 shows a typical pressure distribution thet is generated through the design
,.thod An Interactive modification of this pressure can be performed and the pressure distribution can be modified, us
shown in Figure 8, to produce a realistic trailing edge pressure distribution.

6. RESULTfS

We now present three design problems to illustrate the-application of the MGM2D airfoil anplysis/design code. The
first problem demonstrates that target pressure distributions corresponding to a known airfoil geometry can be used to
recover the target geometry starting from some arbitrary baseline configuration that is not "close" (thickness, camber,
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Figure 7. Typical Airfoil Pressure Distributions Generated with the Velocity Function Method
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Figure 8. Typical Ti ailing Edge Pressure Recovery

etc.) ~o the target geometry. The second example is similar to the first, bb t also demonstrates that the MGM21) algorithm
can be used to design airfoils even when the baseline leading-edge region. cqu.res significant changes. The th~rd example
was choseA to solve a specific airfoil design problem where the target pressures were gen~erated with the ADAM-system
and correspond to certain desired lift and moment coefficients.

Several-parameters were held constant for each of the sample -problenis. These pirameters end their -respective
values are

1) -Crid size =157 wrap-around (F), 58 normal (rI)
2) Nodes in wakeo reginn = 31
3) Grid clustering normal to airfoil surface = .0000 chord lengths
4) cE 5.0,ci = 20.0
5) Time-steps between geometry perturbations =60
6) Variable time-stepping option, At. 0.5, and F3 0
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6.1 Design CaseNo. 1

For Case No. 1, the MGM2D code was used in the analysis mode to compute the surface pressures corresponding to
an NACA 64A010 airfoil at M. = 0.8, oa- 0°, and Re = 6,500,000. Two thouseiW ;terations (time-steps) were required to
reduce the correction (Equation 5f) Live orders of magnitude. It should be notFs that for more difficult cases the Navier
Stokes code may require more iterations (2,000 to 4,000) in the analysis juode to achieve similar convergence levels.
However, the convergence daracteristics described here are a function of the particular CFD solution procedure used as a
basis for the design algorithm, and can be affected by a variety of parameters, including grid orthogonality, dissipation,
and time-step size.

The calculated Cp values were next used as target pressures for the MGM2D code operated in the design mode. The
baseline airfoil used for this case was an RAE2822 section. The- computational grid for the starting configuration is
shown in Figure 9. This airfoil has an aft-loaded camberline, and is significantly different in shape from the NACA
64A010 airfoil used to produce the target pressure distribution.

Figure 9. Baselline Airfoil Shape and Computational Grid for Case No. 1

rhe MGM2D code was run .n the design mode for 4,000 iterations with uniform freestream conditions as the initial
flowfield solution. That is, a converged flowfield solution for the baseline coufiguration was not needed to start the design
process. The baseline served primarily to set the trailing- edge thickvness, which was held constant during the design
iterations.

Equations 10 and 11 were evaluated by means-of nonuniform physical coordinates for the finite-difference
e ,pressions (Design (.ption No.1). The values of the user-specified coefficients in these equations were fixed at Fo- Fj-
F2 = 4.0. This choice of coefficienta had the effect of reducing the AY distribution to 2b percent of the values actually
computed with Equation 9.

Figure 10 compares the final "designed" airfoil and the baseline configuration. To reach the final-configuration,
alues of the maximum source term, Qmas, and the average-value of the source-term over the airfoil surface were both
-duced more than two ordersof magnitude.

Figure 11 compares the final and target pressure distributions, where the "final" pressures were obtained from an
a nalysis run with the "designed" airfoil geometry. An analysis of the design configuration verifies that the computational
procedure has ptoduced a geometry that matches The target pressures within tolerances acceptable to the program user.
For this example case, the final design configuration was achieved with nt much more computational effort than would
have been required to analyze a single airfoil geometry by a cut and try approach.



5-14

DESIGN

--------- BASELINE

Figure 10. Comparison of Baseline and Design Airfoil Contours for Case No. 1

- 1.0 DESIGN

AV TARGET

-0.5

Cp

0.0

00.2 0.4 xc 0.6 0.0

0.5

Figure 11. Comparison of Design and Target Pressure Distributions for Case No. I

6.2 Design Case No. 2

The design goal for Case No. 2 was-to demonstrate that the MGM2D code can produce airfoils whose pressure
distributions required significant modifications to the baseline leading-edge geometry. As in Case No. 1, target pressures
were first computed for a known baseline configuration, and-then the MGM2D code was used to reproduce the target
geometry.

For this example, the target pressures were computed for an NACA 0006 airfoil section at M,, = 0.6, a = 0.0°, and
Re = 1,000,000. An NACA 0012 airfoil was used for a baseline configuration. A converged flowfield solution for the
NACA 0012 airfoil was used to start the design process. Then four thousand iterations were performed in the design
mode, using "Design Option No.A." At this point, the design airfoil had achieved a reasonable match to the targets
everywhere except near the leading-edge position, upstream of the -17-percent chord location. The second design option
was then applied for 1,000 iterations, after this design cycle, the value of the maximum source term had dropped by an
order of magnitude. For this-final design run, the coefficients F0, F1, and F2 were set to values of 100, 200, and -200,
respectively.

Results for this sample pro:,1em are given in Figures 12 to 14. Figure 12 shows the leading-edge region of the NACA
0012 baseline airfoil, while Figure-13 illustrates the leading-edge region-of the designed airfoil Finally, Figure 14
compares-the upper-surface-prcssure coefficient distributions for the-target pressures, the design pressures after 4,000
iterations, and the final design pressures after an additional 1,000 iterations. Although Case No. 2 is a relatively simple
design problem, it demonstrates that the present numerical procedure can produce successful aifoil designs even when
large changes are required to a given baseline shape (100 percent tic perturbation for this case). A design procedure with
this type of characteristic frees the aerodynamics engineer from the need to know a-starting, or baseline configuration
that will be "close" (in camber or t/c) to the final design configuration ultimately produced.

6.3 Design CaseNo.3

For Case No. 3, an airfoil was to be designed with a maximum thickness of approximately 11 percent of chord; a nose-
up-pitching moment coefficient of 0.0078 at a Mach number of 0.78, a Reynolds-number of 4.2- million, and a-drag
divergence Mach number greater then 0.78 at a lift coefficient of 0.128. The ADAM system was used to find pressure
distributions that would satisfy these requirements and yield low drag coefficients.
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Figurec12. Airfoil Contour and Computational Grid at the Leading Edge of the Baseline Configuration
for Case No. 2

FigureI 13 AirilContour and Computational Grid at the Leading Mdg.-of the Designed Cor~figuration
for Case No. 2

The problem posed by Case No. 3 represents a robust test of the MGM code for two reasons. First, the-target
pressure distribution incorporates a medium strength shock wav on-the airfoil-upper surfare. In addition, the tar-got
ureESfLres selected are flat roof-top" type distri-buions (aCD/ax,- 0 j over-large portions of the-upper and lower surfaces of
the airfoil. This targetCp distribution in plotted inFigun- 15 as upper (4) and lower (V) surface symbols.

The starting conniguratio'. used for t Iis problem was a symmetrical NACA 64A010 airfoil section. As in Case No. 1,
this design problem used en impulsive start from unif'orm freestream conditions. Also, Equations 10 and 11 were
evaluate -vith non-uniform x coordinates throughout the design process,
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Figure 14. Con ,jrison of Baseline, Target, and Design Pressures for Case No. 2
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Figure 15. Cemparison of Design and Target Pressure Distributions for Case No. 3

Approximately 12,000 iterations were used to produce an airfoil shap that gave a reasonably close match to the
target pressure distribution. The design was generated with two different sets of coefficients Fe, F, and F2 . For the
initial 4,000 itrations, values of these coefficients were set at Fo = F1 = F2 " 4.0. For the second 4,000 iterations, the
design process was slowed down slightly by increasing the values of these coefficients to FO =F = F2 = 10.0. This has
the effect of further reducing the amor-it of the correction, AYi, applied to the airfoil surface. The final 4,000 iterations
useudvaluesofFo = F1 = F2 = 4.0.

The airfoil utessuresresulting from the final design geometry are also shown in Figure 15, while the design airioil
contour ar.l computational grid are shown in Figure 16. Comparisor- of the target and design airfoil lift and moment
coefficients are given below;
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Coefficient Target Design

CL 0.1280 0.1200

CM 0.0078 0.0070

These results reflect a six-percent difference in lift and a ten-percent difference in moment. An examination of Figure 15
shows-that the region ofgreatest discrepancy between the target and design pressures occurs near the airfoil trailing
edge. It is likely-that a target pressure distribution with more pressure recovery at the trailing edge would produce a
better airfoil design, as discussed in Section 5.6.

Figure 16. Design Airfoil Shape and Computational Grid for Case No. 3

7. CONCLUSIONS

The MGM design procedure has been incorporated into an existing Navier-Stokes code. The method is relatively
efficient in that it does not significantly increase the computational effort required to obtain airfoil designs above that
normally required to use the Navier-Stokes code in the analysis mode. Many design problems can be solved for the same
computational-effort as that required for a single Navier-Stokes analysis. Since the present design method is based on a
Navier-Stokes formulation, it should be able to account for viscous flowfield phenomena that may not be detected by
design methods based on FPE flow solvers.
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SUMMARY

An advanced panel method employing singularity distributions of higher order and
based on mixed boundary conditions of Dirichlet- and Neumann-type has been recently
developed for the potential flow analysis of arbitrary airplane configurations at subsonic
and supersonic speeds. Some work is in progress to provide thin method with a design
opticn capable of relofting the surface of a given configuration from prescribed pressure
distributions. The purpose of this paper is to present the mathematical background of the
herein used inverse algorithm and to account on some examples o: application.

INTRODUCTION

The numerical procedure presented in this paper belongs to the inverse methods in the
sense that it is capable* to define the geometrical corrections from a baseline
configuration required to obtain a target pressure distribution. such methods can be very
useful during the aerodynamic design process since they allow the designer to specify
directly the surface pressure rather than to find out by intuition or by trial-and-error
procedures the particular geometry pertinent to the desired aerodynamic characteristics.
Their applicability spectrum is very broad, ranging fhum the design of entire
configuration components like wing surface or external stores (i.e. wing tip pods or
underwing tanks) to the relofting of local regions like - for example - for mtnimising the
fuselage-induced interference effects on wing isobar patterns or mitigating the adverse
pressure gradients causing drag penalty or boundary layer separation.

In contrast to the analysis case, the problem of determining the geometry
corresponding to a given pzessure distribution is nonlinear even within the potential flow
assumption. However, the problem can be solved in an iterative way, starting from an
initial Suometry, tinearising the relationship between geometry and pressure and
approaching the final result by a succession of linearized cycles, which, in turn, consist
of three steps. First the r.rodynamic characteristics of the given configuration are
computed (analysis step). The comparison of the actual pressure distribution with the
target is used to define the goal function for the inverse step. Application of the
inverse algorithm is then used to determines the value of the design variables which
define the geometry corrections (inverse step). According to the values of the design
variables, the new geometry is computed (relofting step). This geometry is then analysed
and if it does not fulfill the target the whole procedure must be repeated until a
determined 'convergence' criterion is satisfied. It is to note here that 'convergence'
must be considered in an engineering sense, since neither from a mathematical point of
view the uniqueness of the solution can be guaranteed for any arbitrary pressure
distribution nor any solution is physically meaningful (e.g. solutipns with negative
thickness).

Due their ability to efficiently handle complicate three-dimensional configurations,
several investigators have used a panel method in the analysis step, although only a
handful cf the existing panel method codes inzorporate a design. Option. Each of these
methods features different choices as regarding to the type of inverse algorithm used, the
degree of linearisation assumed and the definition of the design variables. Of course
the particular choice for each of these parameters have a large impact on applicability,
accuracy and computational efficiency of the methods.

Earlier methods - such those of Ref.s I to 3 - used various arrangements of vortex
sneers located on the wLng mean plane tot yielding the additional velocity distxbution
required to match the prescribed pressure distribution. The change in the chordwise slopes
are obtained from the normal velocity induced by his additional vorticity distribution.
In principle, such methods are especially suited for the optimization of wing camber and
twist. Wing section thickness and real fuselage interference effects can be taken into
account by the methods of Ref.s 2 and 3, while the method of Ref. 1 is limited to presence
of axialsymmetrical bodies. Inclusion of source distribution within the design variable
coupled with use of singularity distributions located on the actual surface of the
configuration was instrumental in attaining the arbitrary three-dimensional capability of
the methods of Ref.s 4 to 7. The normal velocity distribution is directly controlled in
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these methods either by specification of the perturbation potential function - Ref. 4 - or
by use of a surface-transpiration technique -Ref.s 5 and 7 -derived from the potential
flow/boundary layer interaction modelling. The non-linear operator which relates the
change of pressure to the geometry correction is approximated by using a Taylor expansion
around the given geometry. In Ref. 6 the linear derivate of the potertial function with
respect to a displacement in z-direction is analitically taken into account, giving the
method the ability to accurately analyze large changes to wing section geometry. All other
methods retain only the constant terms of the Taylor serie, so that only smaller pressure
changes may be achieved during one iteration step. Excepting the method of Ref. 5, all
other methods require the calculation of different aerodynamic influence coefficients
(AIC) during the analysis and the inverse step of each iteration cycle. Finally, design
applications for supersonic speeds are only known for the method of Ref. 1, although the
PANAIR design procedure - Ref.s 4 and 8 - should not be in principle restricted to
subsonic flow conditions.

In the last years the advanced panel method HISSS has been developed by the author
for the calculation of linearized potential flow about arbitracy three-dimensional
configurations at subsonic and supersonic speeds. Since this code is capable to yield
smooth pressure distributions at both subsonic and supersonic Mach numbers, it was assumed
that it could be possible to develop a common inversc procedure for both speeds regimes
using the HISSS code in the analysis steps. The purpose of this paper is to briefly
present the numerical formulation followed in the definition of this inverse procedure and
to report on some demonstrative applications of the so far developed algorithm. A brief
description (f the HISSS code is also given for completeness.

DIRECT ANALYSIS: THE HISSS PANEL CODE.

HISSS is a three dimensional panel method based on the use of surface singularity
distributions of higher order for the calculation of linearized subsonic and supersonic
potential flows. The configuration is modelled by networks of panels carrying linearly
varying sources and quadratically varying doublets whose unitary induced &erturbat'on
velocity and potential are computed at a set of discrete points - control points - nd
assembled into the aerodynamic influence coefficients (AIC) matrices. Fulfillment of
appropriate boundary conditions at the control points generates a linear system of
equations for the unknown singularity stnengths. Once this system has been solved, the
perturbation velocity at each control point is computed. Surfaces pressures are derived
from local velocities at control points. Integration ot such pressures is then performed
over the configuration surface in order to calculate aerodynamic forces and moments.

The HISSS program permits many different modeling options. Singularity distributions
of source and/or doublet type must be defined for each non-wake network. Different types
of boundary conditions are available for each set of network control points. These are of
Neumann-type - i.e. normal mass flux or normal velocity - and of Dirichlet-type - i.e.
potential of perturbation velocity, which can be specified on both sides of a panel, or as
average and difference values of the above quantities at a control point. A more complete
presentation of the mathematical formulation of the method is found in Ref. 9. Examples of
application of the method to airplane and missile configurations can be found in Ref.s 10
to 12. More recently, the part of the code relevant to the calculation of the AIC matrices
has been restructure' for allowing efficient vectorisation on the Fujitsu/Siemens VP200
vector processor.

FORMULATION OF THE DESIGN PROCEDURE.

OBJECTIVES

The inverse algorithm presented herein was developed aiming at complying to the
following requirements. First, the same basic procedure had to be applicable to any type
of configuration components for subsonic or supersonic design purposes. Second, the
selection of the algorithm had to consider - for computational efficiency - the
possibility of utilizing the AIC matrices already ava-lable from the analysis step during
a given cycle of the iterative process. Third, *-he algorithm had to be stable and exhibit
good convergence characteristics. Fourth, a relofting procedure had to be incorporated
within the design loop, enabling the analysis of the new geometry in a filly automatic
way. Moreover, the new geometry had to be easily accessed from the computer-aided,
interactive graphic application system used for defining the geometry data base of the
confiourations. Finally, hiqh compatibility with the analysis method was desirable for
minimizing the user's effort required for operating the design option.

__Li- -- ~-
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DERIVATION OF THE INVERSE ALGORITHM

In its more general modelling option, the HISSS method employs a set of combined
source-doublet networks zo represent the solid surface of the given, configuration. The
individual strength of the source and doublet distribution must then determined by
specification of two different types of boundary conditions at the midpanel control
points. According to Green's third identity, the proper combination of sources and
doublets can be determined by setting to zero the total mass-flux through tae impermeable
surface and the perturbation potential on the internal side of the wetted surface.
Inspection of local velocity/singularity relationships shows that the mass-flux condition
determines directly the local strength of the source distribution, which is proportiunal
to the normal component of the freestream velocity vector, i.e.

a- - Vox n (1) ,

where n is the unitary normal vector at the control point. On the other side, the
incremental velocity on the external side - and hence the pressure - depends directly on
the local gradient of the doublet strength. This can be easily explained by following
considerations. A local orthogonal coordinate system &,i and t is constructed in the
tangent plane with the origin in the control point, 4 being the unitary normal at the
control point. Expressing the total velocity as sum of the freestream velocity V. and of
the perturbation velocity v. components we can write

V, t - ( V.t + vZ, V., + vp, V.. + Vp&) (2)

for both the internal and the external side. Assuming that the zero perturbation potential
on the inner side implies also zero perturbation velocity there, the total velocity at the
external side can be expressed as

- V. + a6v () ,

where Ave indicates the variation of the perturbation velocity betweea the two side of the
singularity distribution which is equal to

AvP ( p a, ,, ) (4).

Substituting (4) in (3) and making use of (1) we finally obtain

iVt}. - ( V.Z + Pt, V.n + P, 0 ) (5).

The relations (i) and (5) show clearly the complementary role played by the -wo
singularity types in the analysis problem. The sources provide the geometrical information
while the doublets drive the kinematic field. The consideration of these different
contributions was used in the formulation of the present inverse algorithm. At each
iteration cycle, the comparison of the actual pressure distribution vs. the target one
can be converted into, an inctemental tangential velocity distribution which, following
equation (5), determines dxrectly the gradient of the incremental doublet distribution
:equired to match the targe pressure. On the sought geometry, a source distribution
proportional to the still unknown local normal fulfills the internal potential boundary
condition. conversely, fulfillment of this boundary condition on the given geometry
determines an additional distribution of sources whose local strength can be used for
updating the geometry.

The advantages of this formulation are manifold. First, the same boundary condit'on -
i.e. zero internal perturkation potential at midpanel ionttil points - and the samo AlC
matrix are used in both the direct and the inverse loop. Second, the aercdynamic
interference between d.fferent configuration components is automatically aken inco
account through the AIC matrlx. Third, the method is equally suited for the design of the
whole configuration as for the design of local regions. The partial design case can be
regarded as a mixed direct/inverse problem, where the doublet distribution is
pre-determined at the pressuLe-specified regions and the source strengths are known in the
geometry-specified regions.

The three-dimensional application of this algorithm is explained next. At the
beginning of the first cycle the given configuration is analysed by the HISSS code. After
having obtained the solution for the direct case, the target pressure distribution is
defined at the control points of the regions to be modified. The specification is done at
a network level, sc that during the inverse loop the total configuration consists of
'design network', i.e. networks for wh.ch a pressure target is defined, and - possibly -
of 'analysis networks', whose geometry has to be kept fix. The first step is related to
the determination of the gradient of the additional doublet oistribucion for the design
networks. Direct differentiation of the surface pressure distribution was considered too
expensive. Instead, in consideration of the small variation assumption within each
iterative cycle, the following app:oximation is used. The magnitude of the additional
velocity v. is obtained from the difference bctween the target and the actual pressure
coefficients. The direction of v, is assumed to be parallel to the local flow found at the
present ite-ation. Then the doublet distribution over the surface of the design network
are determined by numerical evaluation .of the integral



6-4

A - v. x ds + C (6)

where s a curvilinear coordinate along the integration path and C an arbitrary constant.
In order to obtain the necessary accuracy, the distribution of v. computed at the control
points is interpolated using the quadratic spline functions already available from the
doublet singularity distributions used in the analysis step. The numerical integration
starts from the most upstream panel corner, where the constant C is first set to zero.
When the values of p are determined for all the control points of the pressure-specified
regions, a linear system is set up, using the AIC matrices of the direct loop for imposing
the zero internal perturbation condition on all the control points. The solution of this
linear system determines the additional source distribution a' .n the design networks and
the addit-onal doublet distributions /' on the analysis networks. The constant C must now
be determined from closure considerations. The integral displacement

W - f a' dS (1)

is computed for each design network. If the edges of the network are to be maintained, the
quantity W must be zero. Due to linearity of the problem, the value of C satisfying this
condition can be easily determined.

DERIVATION OF THE RELOFTING ALGORITHM.

The next task is to modify the geometry of the design networks so that the normal at each

control point satisfy the relationship

V. x n' - a + a' (8).

The displacement of the panel corner points has been selected as design variable. This
choice allows to maintain geometrical continuity during the relofting process, a mandatory
requirement for the supersonic case. Moreover, possible geometrical constraints can be
easily incorporated. Each corner point is allowed to move along the local normal at the
surface of a quantity X. In the case that the points along two or more e.ges of the
networks are to be maintained, the number of the design variables X is smaller of the
numter of conditions (8) so that a least square approximation must be used. To this
purpose, a goal function Is defined as

R(Xj) - E, w, (fi - n'1 )z (9)

with j - (l,2,...,M) , i - (1,2,..,N) und M < N,

where M and N are respectively the total number of design variables and constraints
conditions, fi is the approximation of n, and w is a weight function. The solution of the
least square method can be experssed in matrix form as

- I C v ). C w I .( v w - • C w i .I v I n, (10)

where

VI
0, 2 0 0 0

w ; A 0 0

fwl. 0 0 w 0

0 0 0 0
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and

n',

Since the functions filkX) are non linear, an iterative procedure must be used. The
procedure employed is an adaptation of the Newton-Raphson method used in Ref. 13 for
computing the geometry of the leading edge vortex sheet. In this method, at each iteration
step the nonlinear functions are app:oximated by the corresponding linear terms of the
Taylor series. For example, the zero values of a nonlinear function F(x) are obtaining
through a series of iterations of the form

(3F/ax)(t) 6x~t) - - F(t) (11)

where

x(t+l) . X(t) + Ax~
t
)

It can be seen that the solution x at the iteration (t4l) dependes only on the values of
the function F and its derivative aF/3x, *jhich are known from the previous iteration step
t) . This scheme can be applied for the solution of the system (10), provided that the

vectors JX and jn' be replaced by the following

( Xt+1) XI- t

4 AX")~ X 1 ( XM) -

and

= ,t f n'1 i' t::
n, s  st

af~t n: Ifi: tU

and that the derivatives ani/D)J be computed at the iteration level (t).

The it~rative process starts using the values computed for the given geometry, i.e. at the
level t-l is

and

X .' 0

The derivatives in the matrix [ v )(1) are also computed for the starting geometry. The
solution of the system gives the first approximation of the geometrical corrections j
(l) .For increasing the stability of the scheme, a relaxation parameter 6 is introduced

so that at each step the corrections etfectively used are first reduced to

4 X~'' -6 j 6>(t) + I X"') mit 6 < I.

Now the new normals fil1 t+ll are computed for the perturbed geometry. The increment of-the
norm of the panel normals, defined as

N ,- I I ? fil -1-1 - ? jj tJ I

is introduced to control the convergence of the process. is this nora smaller of a given
convergence parameter e, the iterative process is stopped. If the norm is larger than o,
the quality of the solution is controlled by examination of the norm

N, I- w Pt)~ 6M t

which represents the norm of the linear contribution to Nnl. To reduce the problem of
overshoot in the classical Newton scheme, a halving process o: the relaxation parameter
is applied to limit at each iteration the norm N., by ensuring that

N - tf N, .
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APPLICATIONS

Before being able to incorporate the present design option into a program system as
HISSS, a large array of testcases should be computed to acquire a sufficient knowledge and
confidence on the algorithm performance. This was not entirely possible so far. Hitherto
applications cover only simple tests chosen to explore some typical areas of applications
so as to be able to determine where future additional work is required. For better
evaluation of the algorithm capability, in the examples presented here the pressure
distributions selected as target for the design procedure were obtained from the analysis
of a known geometry, so that the convergence of the pressures aad of the geometry can be
judged at the same time. Three cases are presented here.

REDESIGN OF NLFI AIRFOIL.

This testcase was computed using a two-dimensional implementation of the present design
algorithm. A constant source/doublet panel method employing the Dirichlet formulation was
used in the analysis of the wing sections. A NACA 0006 symmetric profile airfoil at zero
angle of attack was chosen as initial geometry. Tha analysis of the NLF1 at zero angle of
attack provided the target pressure for the design exercise, see figure 1. During the
relofting steps all the endpoints of the panels but those on the trailing edge were
allowed to move principally alonq to the local normal. An undnrweighted movement along the
tangential direction was also permitted for easing the relofting task in the leading edge
region. Figure 2 shows the convergence history of the profile contour during the
Newton-Raphson procedure of the first iteration step. The comparison of the actual vs. th9
target pressure distribution at the end of the first iteration cycle is presented next,
figure 3. After two further iterations a reasonable agreement with the specified was
target for the pressure was produced, see figure 4. Further iteration cycles did not
produce any substantial improvement, but proved the stability of the presert scheme. The
geometry produced at the tenth iteration was almost indistinguishable from that of the
reference airfoil. The residual differences in the pressures are thought to be
attributable to the excessive sensibility of the low-order panel method used for the
analysis to local variations of panel lengths. Since it has been often demonstrated that
the higher ordeL formulation employed in the HISSS is by far more forgiving to
irregularities in panel spacings, generation of irregular panel density was not considered
as a drawback for the three dimensional applications of the desion procedure.

SUBSONIC AND SUPERSONIC REDESIGN OF A THREE-DIMENSIONAL BODY.

A fully-three dimbasional geometry was used for testing the pilot implementation of the
design option into the HISSS code. The target body features an axisymmetrical ogive
followed by an indented region consisting of circular sections. The axial distribution of
the radii and the location of their origin are specified in such a way that the upper
crown line describes a convex-concave-convex curve while the bottom line is straight,
figures 5 and 9. The purpose of the test was to determine if the design option could
reproduce this geometry starting from an ogive-cylindrical body, figures 6 and 10. The two
configurations wore panelled using one network for the ogive and one network for the aft
part. In the design case the rear network was defined as design network while the geometry
of the ogive had to remain unchanged. The pressure coefficients calculated at the panel
control points of the target body were used as boundary conditions to determine the
additional doublet distribution. Fulfillment of the zero perturbation potential condition
on the inner inside of the ogive-cylinder configuration together with the use of the
closure condition resulted in the determination of the additional source distribution. The
geometry of the cylindrical surface was then relofted allowing each panel corner point to
move in the x constant plane along the local normal so that to minimize the function R(A).
The exercise was carried out at subsonic and supersonic speeds.

At subsonic speeds, two iterations of this design ptocedure produced a pressure
distribution almost identical to the original one, the difference between the first and
the second iteration being relatively small, figure 7 and 8. This indicated that for
engineering purposes one iteration cycle could be sufficient. The convergence of the
geometr shows a good qualitative agreement. However the cross sections of the generated
surface aLe not circular, indicating the necessity to allow the panel corner points to
move also in a tangential direction.

At supersonic speeds, three iterations were necessary tj obtain a good global
agreement with the target pressures. Figures 11 and 12 show the results at the end of the
first and the third iteration cycle. Local failure to complete match the target pressure
distribution at both fore and aft ends of the design networks are attributable to the
cC'^efnaSS of the ende1-1in., The ciparea~n of the convergence rate in comparison with the
subsonic is due to the more complicate pattern of the supersonic pressure distributions.
Here again uncomplete convergence of the geometry indicates the necessity of moving the
grid points in two directions.
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CONCLUSIONS

An inverse design procedure capable of relofting the geometry of a given
configuration or of parts of it by specification of a target pressure distribution has
been developed. As demonstrated by its application on simple testcases, the basic
algorithm is very general and applicable to any kind of geometry at subsonic and
supersonic flows. Fast convergence characterijtics and good computational efficiency are
achieved by the use of the same aerodynamic matrices in the direct and in the inverse
loops.Some additional work is needed to further generalize the relofting procedure before
incorporating the present algorithm as fully-automated design procedure into the HISSS
panel code.
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I INTRODUCTION

A well known problem in the field of aerodynamic design is the inverse problem of finding the geometry
of a wing which produces a given target pressure distribution (and hence has given aerodynamic
characteristics) for prescribed free stream conditions. Zn this inverse problem, non-linear boundary
conditions of a mixed type should be applied on the unknown wing surface from which its geometry should
be calculated. The resulting non-linear equations may be solved by means of an iterative method.
Existing iterative methods for solving the inverse aerodynamic problem can roughly be divided into two
classes (see Ref.1).
In the first type of methods, each iteration starts with the calculation of a flow field which produces
the prescribed target pressure distribution on the wing surface iterate, but in general will allow a
non-zero-mass flow through this surface. The geometry corrections are then derived in such a way that
the transpiration mass flow will vanish.
In the second type of method, usually called residual correction methods, first the actual flow around
the wing surface iterate is calculated (satisfying the zero mass flow condition at this surface), by
means of an analysis code. An iteration is completed by applying some approximate inverse correction
rule for the calculation of geometry corrections driving the pressure defect (the difference between the
target- and the current pressure distribution) to zero.

At NLR, the development of inverse aerodynamic methods has beer directed towards the second type of
methods. The main reason-for choosing a residual correction type of method is its simplicity. An
existing-flow solver (with the desired level of flow modelling) can be used-without modifications for
the analysis-step. Only rather simple correction rules have to be developed and coupled to such a flow
solver. If a-converged solution is obtained, the-required pressure distribution will indeed be produced
by the designed geometry, within the accuracy limits of the flow solver used. Also the present design
system is based on a residual correction method.
The flow solver used for the-analysis Is, at present, a transonic fuli potential code (XFL022), capable
of calculating the inviscid flow about a wing/body combination. In the near future, this flow solver
will be replaced by a transonic full potential code coupled to a boundary layer calculation method, in
order to include viscous effects due to wing boundary layer and wake.
The applied approximate inverse calculation is based on two former developments at NLR. The basic
correction rule consists of the 3D inverse subsonic panel method which is used in the subsonic wing
design method, reported in reference 2, being available at NLR since 1974. The adaptation of the
correction rule to transonic flows, is based on the supersonic geometry correction module applied in the
2D transonic airfoil design method INTRAPS (Ref.3), which was completed in 1984. This correction
consists of the application of the supersonic wavy-wall formula in the way-as suggested in reference 4,
of which for the-present method a 3D interpretation is used.
In this way, 3D transonic wing design can be performed. Just like in the former subsonic design method,
mentioned above, the influence of a fixed body, to which the wing may be attached, can be taken into
account.

In practical wing design, it is-usually necessary to impose some constcaints on the desired wing
geometry. Fi:st of all, such geometric constraints may prove to be necessary in order to prevent the
iteration process from converging to physically unrealistic geometries (e.g. local negative thickness),
or even to obtain a converged solution at alll. In this light it should be mentioned, that in case of 2D
airfoil design, the vell-posedness of the inverse problem can only be established-when some auxiliary
constraint relations for regularity and closure are satisfied. For the 3D inverse problem, however, the
question-of well-posedness seems still to be a., open question, even for incompressible flow. In that
case, the possibility of intervening in the iteration process and apply or change some geometric
rcnstraints may turn out to be an indispensable instrument to obtain a reasonably converged solution.
In the second place, some geometric constraints may be necessary from the structural engineer's point of
view, who in-general will have some requirements with respect to the geometric properties of the wing-to
be designed (f.e. a lower bound for the thickness, prescribed trailing edge angle or leading edge
radius). The present design systtm offers, just like its predecessors rentioned above, the possibility
of imposing geometric constraints. The inverse correction procedure uses a weighted least square error
approach for solving the over-determined system of equations resulting from- the pressure defect
corrections and the geometric constraints. Weight factors assigned to the residuals in pressure defects
and in geometric constraints can be prescribed and adjusted during the iteration proceds. In this way a
flexible control over the design procedure is realized, and the design goals can be reached in the best
possible way, avoiding troubles arising from the possible Ill-posedness of the inverse problem.

During the development of the present system for transonic wing design with geometric constraints, a
modular set-up has been pursued (see Fig.1), which also provides a great flexibility.
The PRE- and POSTPROCESSING subsystems perform tasks which are most conveniently handled in an
interactive way. The flow solver included in the ANALYSIS subsystem as well as the correction procedure
included In the INVERSE subsystem, are running in-hatch-modA. All Atihsygroma-MAkA uo.nf aoaann
database. The flexibility-exists-to-replace a--subsystem-easily by-another one (e.g. replace the flow
solver by a more advanced-one), or even to run the subsystems on diffeient computers (e.g. at present
arrangements are made to -perform the flow solver calculations, the most time- consuming part of the
process, on NLR's NEC SX-2 supercomputer).

In the present system, no attention is paid to the subject of designing an aerodynamically attractive
target pressure distribution on the wing. At NLR-some computational tools-are available to-support this
task. In case of complex configurations, the apanwise load distribution can be optimized (to produce
minimum drag) by means of the system SAID (Ref.6). Optimization of the sectional pressure distributions
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is a task which can be performed with the help of the general optimization package CADOS (Ref.7).

In the subsequent sections the design procedure included in the transonic wing design system will be
described in more detail. Emphasis will lie on the extensions which are made to the f -=r residual
correction methods mentioned above. For completeness sake, a short description of the 3D inverse
subsonic panel method is included, in order to show the way in which geometrical constraints are taken
into account. Finally, the practical applicability of the present transonic wing design system will bc
demonstrated by an example.

2. TRANSONIC WING DESIGN PROCEDURE

A functional breakdown of the transonic wing design procedure is depicted in Fig.2. It shows the
relevant processes which are included in-a single iteration. With the flow conditions, the body geometry
and the iterate for the-wing geometry as input, the current pressure distribution is ca.ulated with the
analysis code. The pressure defect (SC ) is then calculated as the difference between the target- and
the current pressure distribution. ThePinverse calculation, described in the next sections, translates
the pressure defects Into geometry corrections for thickness and camber (6z and 6z ). These geometry
corrections are added to the iterate for the wing geometry, and a new wing geometryLis obtained. The
results of the present iteration can be inspected and intermediate results may be written to an output
file. Depending on these results, the weight factors on pressure defect residuals and on geometric
constraint residuals may be adjusted. Now, either a new iteration can be initiated iith the input taken
from the updated database, or the iteration process can be terminated in case of a suitably converged
solution.

3. INVERSE CALCULATION PROCEDURE

The inverse calculation procedure Is schematically represented in figure 3. Details of the nost
important steps involved, will be described-below.

* 3.1 Defect pressure splitting

First the pressure defect is splitted into a subsonic- and a supersonic part, distinguishing between
regions where the flow behaves subsonic and regions with supersonic behaviour of the flow. The split
will be defined for the pressure distribution of a etresmwise wing section, and is essentially the same
as the split describei in reference 3 for the airfoil cas.. in the present 3D method, however, a
modification in the definition of the critical pressure coefficient is applied.
The relevant formulas are derived from those applied in the transonic airfoil design method, by means of
simple sweep theory. The transformation is exact for the inviscid flow around an infinite swept conbtant
chord wing, and Is in the present 3D method applied to the quantities of the aquivalent 2D flow normal
to the local geometric angle of sweep (Fig.4). The approximations introduced in this way, are based on
the assumption that a high aspect ratio wing is-considered with its taper near unity.
The relevant "critical" pressure coefficient is derived as,

** 2 ( 2 + y-I M2 Y-1c - --! )4. -- 1 -- cos'A) -1) (1)
P ~ 2 I Y+

Under -he assumption that subs~nic theory should be applied in cas, both the -actual- (C ) and the
target pressure coeificient (C ) are subsonic (in the sense as described above), and pu?e supersonic
theory if both coefficients arg supersonic, the following 3plir is applied (see Fig.5),

6 Cp - max(Ct C**) -ax ( C
* )

Psub p p P

6 Cp =min(CC*)-min (Cn, C** ) (2)upp p p p p

3.2 Subsonic perturbation velocity defect

The subsonic part of the pressure defect is expressed in terms of a perturbation velocity defect
distribution. The procedure followed is exactly the same as in the 3D inverse subsonic panel method of
reference 2. The target and the actual calculated pressure (velocity) distributions are linearized into
chordwise perturbation velocity distributions, in the same way as is done in thb compressibility
correction of the NLR panel method (Ref.8). This correction includes an inverse form of the
Riegels'-type leading edge correction, which removes the singular behaviour at the leading edge of the
usual thin wing theory. According to reference 2, this correction is essential for the convergence of
the iteration process. The resulting perturbation velotities are used to calculate the chordwise
subsonic perturbation velocity defects on the upper- and lower wing surface (

6
sub uu and 6Sub[).

3.3 Supersonic corrections

The supersonic pressure defect is first expressed in term of corrections for the slope of a streamwise
wing section (4;' - az/Ix). For this purpose-use is made of the supersonic wavy-wall formula in the way
as suggested -in reference 4. This concept was already successfully used in the 2D transonic airfoil
design system (Ref.3). The supersonic wavy-wall formula was derived for 2D supersonic flows (Ref.9), and
establishes a nonlinear relation between the pressure coefficient and the surface slope of an airfoil.
In fact, the formula is only valid for small perturbations to a uniform supersonic flow.
In reference 3, the formula is applied in a linearized form to the supersonic pressure defect resulting
into an expression for the airfoil surface slope corrections.
In the present context, the formulas derived in reference 3 are applied to the quantities of the 2D
equivalent flow (Fig.4). The results are transformrd back to the 3D flow, again using simple sweep
theory, resulting into the following chordwise slope corrections on the wing surface,
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Y
dz' --isecA ( 2 + Mcos

2A) / (1 + Jy c )Y -4-l supCp (3)
Y-1 Ploc Y-1

where the "local" pressure coefficient C is given by,
Ploe

C ' f Y min( Co C) + min (C , c* )) + C . (4)
ploc ) + n P p

The-supersonic slope corrections are calculated for the upper- and lower surface separately

(' and 4z' )

In order to proceed for the supersonic corrections In the same way as for the subsonic corrections, the
surface slope corrections are not applied directly to correct the wine geometry. First, they will be
expressed in terms of equivalent subsonic perturbation velocity defects. In that way care has been taken
that the same representation for the subsonic- and supersonic corrections is used in the process of
compromising between corrections based on the pressure defects and those based on the geometric
constraints (see section 4). The equivalent perturbation velocity defects are derived by means of a
linear thin airfoil analysis, just like in reference 3, but now corrected for the local angle of sweep
(Fig.4). The sectional slope corrections for thickness and camber are calculated,

(q. - 1 sz' + 4i! ) , -- (iz -iZ) (5)

after which the following equivalent perturbation velocity defects for thickness and camber are derived,

C

6eut cosA c (N- (U) dt

(1-M. cos2A)i o (x-61

cosA c - x cQJd
aU - (-i cos(A) ( o ( , (6)

in which c is the chordlength of the-wing section. In fact, the expressions in (§) are obtained from the
standard thin airfoil theory applied to-the local equivalent 2D flow after which the results are
transformed to the 3D flow.

It can be observed from-the equations presented abov,., that the whole procedure-of defect pressure
splitting and translation of supersonic pressure defects into equIvalent perturbation velocity defects,
provides exactly the same formulas as has been used in referonce 3, when the local angle ok sweep is set
equal to zero. As mentioned in reference 3, the supersonic correction procedure forms a rather poor
approximation of the full potential flow. In addition to the deficiencies mentioned there, the deviation
of the real flow from a quasi 2D flow, which has been the basis for the present formulation, makes the
present approach still more approximate. However, for practical transonic design, the present supersonic
corrections seem to drive the-geometry corrections into the right direction, and in general a converged
solution can be obtained in a reasonable number of iterations (see section 5).

4. SUMALRY OF THE 3D INVERSE PANEL METHOD

The subsonic- and the equivalent perturbation velocity defects are added, resulting into perturbation
velocity defects for thickness and camber,

- t (sub uu +sub ui)+eout

aui ( ii -6 u) c (7)cu 2 c (asub u. sub ul)  c(

where c , c and c are relaxation parameters for the overall iteration process.
The translation-of the petturbation velocity defects Into geometry corrections is carried out by means
of the 3D inverse subsonic panel method described in reference 2. Some crucial details of this method
will be summarized below.

4.1. Singularity distributions

The small ehordw __w p __rr___ ' -elccl y are xpv¢vtuu Ly singularity diutributions over the
wing mean plane and the body's surface. As described in-reference 2. thickness effects are represented
by a distributions of x-doubets (p), which has the advantage that the condition of trailing edge
closure is implicitly satisled.
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Camber effects are represented by a distribution 3f vorticity (y), with the effects of trailing
vorticity included in the influence functions.
Finally, the induced normal velocity at the-body's surface due to the above mentioned singularity
distributions, is compensated by introducing a source distribution (o) on the body's surface.
For discretization purposes, the wing mean plane and the body's surface are divided into quadriliteral
panels and the singularity distributions are assumed to be constant over each panel. The discrete system
of equations can be represented by

Kdx u + Ksx a - 6ut  (wing mean plane),

c 6u (wing mean plane)

Kdn -+ Kvn I + Ksn a- 0 (body), (8)

where the vectors y, ., 0, Sut and du represent the values of the corresponding quantities in the panel
midpoints, and the aerodynamic Inflie--ce coefficients are represented by the matrices Kdx, Ksx, Kd
Kv , Ks *

Th lasR equation may be used to express-a in terms of y and Y, which are the basic unknowns.

4.2. Geometry corrections

The geometry corrections associated with thickness and camber in the panel midpoints, are related to the
singularity strengths by

-zt U (panel midpoints)

x (-zc) - KVz Y-- Ksz a (panel midpoints) , (9)

It is preferred, however, to obtain the corrections in the panel corner points. Averaging the doublet
strengths of the panels with a comon corner point leads -to,

zt - Ztdi (panel corners) , (10)

for the thickness corrections. Averaging-and-chordwise integration leads to,

(.z - ZerO+ Zeca (panel corners) , (11)

for the camber difference in a streamwise section, with respect to a fixed reference point in that
section.
The matrix elements of Ztd' Zcv and Zc, can easily be derived.

4.3 Geometric constraints

nresu,,t transonic wing design system, two options for imposing geometric constraints are

place, the possibility exists for imposing a constraint on the thickness. Such a constraint

-rational by specifying respectively:

a-point where the constraint should-be applied;

- a target value for the thickness at that point (z) leading to a target value for the thickness

correction in-each iteration Ozt t-n

- a nonng.tive-weight factor (wt) to be assigned to this- constraint.

Secondly, It is possible to impose-a constraint on camber (difference) by specifying respectively:

- two points in a streamwise section between-which the camber difference should be controlled;

- a target value for the difference in camber between those two points (Az t) from which in each
titeration a target value for the associated correction is derived (6(z)-. AzP-4 1

);

a nonnegative weight factor (w ) to be assigned to this constraint.

4.4 Solution procedure

The resulting over-determined system of equations is solved in-a least square error sense. A functional
is drawn-up by adding the squares of residuals associated with respectively the pressure defects on the
upper surface, the pressure defects -on the lower surface, the thitkness cinstrainta, and the camber
constraintsa Ph .. ..f t L..... b, ed weignr tactors,
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P(~)-- w
2 

(i+d) rd,,1 + 1 y ~ -r + +

+1 W2 (1-dw) Ild. + KaC 11
2 1p 22

+ wep o-d~ ll -d +KsA-6uill +

+ IlWt(Ztdi1 -- )112 +

+ I lwc(Zc + z0- 6 1A))II .v - (12

The factor w Is used for the pressure defect corrections, while the difference in weights for the
upper- and [o0er surface corrections is controlled by the constant dw. The matrices W and W are
diagonal matrices with their diagonal elements equal to the square-roots of the appropriate eight
factors (w and w ) for the points where constraints are operational, and equal to zero for the other
points.

The system of equations to be solved is derived from,

(OPIup1) - 0 , (ay ) - 0 , (i-1,2,...,N) (13)

where it should be mentioned that although g depends formally on I and X, the derivatives in (13) are
calculated as if a is a constant vector, after which a is expressed in terms of u and Y. The neglected
terms are expected to be small because they represent only a second order correction to the influence of
the sources on the body, which effect decays rapidly with increasing distance.
The resulting system of equations is solved by a-block iteration procedure. The geometry correction
calculations are straight-forward, once u and y are known.

In -this way the geometry corrections are calculated as a compromise-between driving the pressure defects
to zero and keeping some properties of the geometry fixed. To which extent each of these goals is
reached, depends on the weight factors, which can be prescribed and adjusted during the iteration
process.

5. EXAMPLE

The practical applicability-of the present transonic wing design system is demonstrated by an
reconstruction example. The wing geometry to be reconstructed is the-well known DFVLR-F4 wing, for this
purpose attached to an imaginary pencil shaped cylindrical body. The P4 wing is a supercritical wing
with an aspect ratio of 9.5, a taper ratio of 0.3, and a kink in planform-at 40% span. The leading edge
sweep is 27.1' and the thickness chord ratio varies from 0.15 at the root to 0.122 at the tip. The wing
planform is shown in Fig.6a where also an impression is given of the body to which the wing has-been
attached.for the present example. A-perspective view of the original wing geometry is given in Fig.6b.
For the reconstruction example, the-target-pressure distribution (the-dashod lines in Fig.7a)
corresponds to the original F4/body geometry of Fig.6 as calculated by the flow solver used in-the
design system (XFL022). The original geometry has been distorted to-produce the initial pressure
distribution (the lines-marked-with-an a) in Fig.7a). Starting with this distorted geometry as the
initial geometry, an attempt has been made to reconstruct the original F4 geometry using the present
design system.

For the inverse calculations the wing-planform has been panelled using 9 panels in spanwise direction
and 30 in chordwise direction (see Fig.6a). The direct flow solver calculations with XFL022 has been
performed on a medium coarse mesh of 80 (chord) x 16 (span) x 14 (normal) points. After a few iterations
it turned out to be necessary to freeze some parts of the current geometry. Small weights-have been put
on the leading edge-thickness of the root- and tip-sections, and also on the trailing edge angle at the
kink seation. The way in which these-weights have been applied, is representative for a realistic design
process.
The final result has been obtained after six iteraticns. As can been seen in Fig.7a, the-target pressure
distribution is very well reproduced near the-tip. Near midspan, some deviations are still present
towards the trailing edge and after the shock. The suction peak, however, is-very well reproduced. Near
the-root sention some-more deviations can-be observed which are concentrated in the leading-edge region.
Such problems were to be-expected because the correction-rules are in this regions rather poor
approximations to the real 3D flow. Furthermore, the thick nasa of the root section forms a severe test
for the present design system. The overall agreement between final- and target pressure distribution,
however, can still be called good.
The final geometry is compared with the original F4 geometry in Fig.7b. The original geometry is very
well reconstructed near the tip, but also at the kink section the resemblance between target- and final
geometry is remarkably good. At the root section, the thickness of the original geometry is not fully
reached.

6. CONCLUSIONS

A new system has been described for transonic wing design with prescribed -pressure distribution in the
rronaneA-of -a-fixd body. Tb -rstid,sal correrion mAthod1 on-whch-the dasian-Aystem in-based. combines
a "complex" direct flow solv6r with "simple" correction rules (inverse supersonic wavy-wall + inverse 3D
panel method). It is possible to define geometric constraints for the wing to be-designed, which is an
essential part of the method. Weight factors on the pressure defect corrections and on the corrections
associated with the geometric constraints can be adjusted during the iteration process, allowing a
maximal control ever the design procedure, in order to reach the design poals in the best possible way.
The-practical applicability of the transonic wing design system-has been demonstrated by an-example.
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Fig. 6 F4 wing attached to pencil shaped body used as an example
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A FASTCOLLOCATION METIIOD FORTRANSONICAIRFOIL DESIGN

by

Sergio De Ponte*, Maurizio Boffadossit and Claudlo Mantegazi a
Politecnico di Milano- Dipartiniento di Ingegneria Acrospaziale
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1-20133 Milano
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ABSTRACT

In the method of ficticious gas for transonic airfoil modification , it is attempted to introduce a ful
ly elliptic calculation code by the use of compressibility sources.

This is done both with the idea of overcoming some of the finite-diffrence limitations and in order to
reduce the computational time.

Taking as reference the standard Hess-Smith panel method in two dimensions, compressibility effects are
taken into account by means of source panels into the flowfield. The panels form a grid which is limited in
extension only where Mach number gradients are expected and much more limited compared to usual computatio-
nal domains.

The system is fast and in general does not present convergence problems from the pratical point of use,
although large numbers of iterations may have some convergence problems.

The final result is always a very strong reduction in wavi drag of the airfoil, as it is the aimof the
method.

Notation

L Chord length 7 nabla operator
V Velocity vector 0 Velocity potential
u x-component of velocity vector e Density
v y-component of velocity vector
x , y geometrical coordinates

INTRODUCTION

The "ficticious gas methods" are rather well known as a mean of inverse airfoil design (I).
Their advanteges may be summarized as follows:

- they do not modify the airfoil nose,
- they allow a few number of free parameters,
- they do not produce shockless flow only near the cortour and shock wawes in the field.
- they-tend to modify the airfoil so-that the pressure distribution is similar to the subcritical one.

The-first advantage means that it is possible to improve high speed performances without reducing
the low speed capabilities. Other methods, like-optimization, may introduce simple empirical correlations
as upper surface coordinates, which are reliable only for rather thin airfoils.

The second is related to the simplicity of the parameter choice and the varsatility of it. In fact,
in many-cases, simply one parameter is needed for the ficticious gas law.

The third is very sij,.ificant, because there is-no grant that a-regular pressure distribution on the
airfoil contour will mean a fully regular flowfield. Although it could avoid shock induced separation, it
will not avoid large wave drags.

The last one is one of the most attracting: hile there is no rationale proof of the fact, it is inte-
resting to note that the tendency of reproducing similar pressure distributions allows an airfoil design
based on boundary layer concepts.

This is true because the- Mach number influence on boundary layer parameters is rather small so that an
approximate but reliable procedure .

All considerations show an interest of the method in designing airfoils for rather high lift coeffI-
cipnts at rathAr lnw-MArh-nijmhor-, Aq fnor trAnqpnr, irplAne, while . prnhably, inverro or art jal %tato

optimization methods, except the most complex, are more suitable-for combat aircraft wings.

*Politecnico di Milano twinner of "Foresio" fellowship **A errygacchi
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A brief summary of the "ficticious gas" concept is the following: It is assumed that the flowfield
is represented by its correct equations in the subsonic part, while in the supersonic part the equations
of motions belong to a ficticious gas and are elliptic. Ficticious gas has in fact any relationship betweent density and Mach number to produce elliptic equations. It is therefore possible to introduce one or mo,-e
free parameters in the law, in order to allow some freedom. At this stage, a ficticious sonic line divides
the flowfield into a correct and ficticious part. This sonic line is regular and the velocity field is
continuous across it.

At this stage it is possible to attempt to solve the flowfield inside the ficticious part by correct
equations, trying to define a new contour of the body, starting from the shape of the sonic line. If the
attempt is successful, we have to exact parts of the flowfield, so that the all stream is represented by
correct equations.

Of course, there is no theoretical proof that the procedure is successful, but with a good choice of
the free parameters it is usually possible to find a quick solution.

The proposed method is new only in the solution of the elliptic equations, while all the rest of the
procedure is quite similar to the usual one.

Taking into account that we need to solve an elliptic flowfield, it is attempted to salve it by means
of a modified incompressible code, and the choice is a collocation method.

Compared'to finite difference solution, it has som advantages. First of all, it is very fast because
it does not require a change in the influence matrix, which could be inverted or factorized once forall.
Second, it is possible to limit the computational domain, because the representing functions automatically
represent the farfield, i.e. obey to asirptotic conditions:this avoid to approach infinity in some way.
Third, they allow the usual form of displacement thickness corrections in the same standard ways as in in-
compressible flow.

The compressibilty is therefore represented by sources in the near field, where Mach number gradients

are significant, while the other farfield is constant density, therefore incompressible. Of course this li-
mits only to subsonic onset flows, but this is pratically also a limit of the ficticious gas method.

The problem is non linear in a full-potential formulation, and is solved by simple iteration.
In this way there is no limit either in angle of attack or in airfoil shape, as in usual incompressi-

ble collocation mathods. In principle, there is no limitation to two-dimensional case.

1) THE SOURCE FIELD

Potential flow equations are written in their complete form for the two-dimensional field. The veloci-
ty divergence is non zero and may be written in the follnwing form, where the right-hand side represents
the non harmonic part:

div V - ube/bx -v De/y

and it is assumed at the n-th iteration that the Mach number distribution is known from the previous ite-
ration. From the Mach number we obtain the density either for real or for the ficticious gas. Ve need there
fore the first derivatives of the velocity vector and of the speed of sound, i.e. of the temperature as usu
al thermodynamic relationships. The velocity derivatives are different in harmonic and non harmonic poten-

tial flow and it is therefore impossible to represent the compressiility, by discrete point sources. Any at-
tempt to do so, will lead to the impossibility to connect the source field to the Mach number and therefore

to iterate the procedure.
The key of the method is to represent the Mach number gradient by locally constant source distribution

in a discrete number of points in the field. For seek of computational speed, the compressibility induced
field on the body contour is afterwards computed by discrete sources collocated a the same points, with
the same strength as used to compute the Mach number gradient.

In tarms of potential, the previous equation may be rewritten in the form:

dvv u2  2 v2  2e +2uv ( 2
.2 2 2 2 2

a 2 x a Y a x x y

which shows the non linear nature of the equation and the appearance of the second derivatives of the poten
tial, i.e. the first derivatives of the velocity.Also the Mach number components u/a and v/a-appear in
the equation.

This divergence is represented by the sources and induces a velo(ity field on the airfoil collocation
points. This field is added to the constant onset flow and treated in the same way, except for the point
that it changes at each iteration. It is easy to see that at each iteration the only unknowns are the sin-
gularities on the airfoil and we need to solve a system of equations eoual to tUe unknown. We use a stan-
dard Hess-Smith method where we have an unknown source for each collocation point and a single vortex dis-
tribution and a normal velocity condition for each collocation point plus the Kutta condition.

Only the right-hand side of the system of equations changes with iteration and therefore the system
matrix rpmalne -jnfhlArged. A!,o tho l , efficients or the field sources is dependent only upon the
geometry and may be computed only once. The resultant computing code is therefore rather fast.
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As starting flow condition, either incompressible flow or Prandtl-Glauert corrected flow may be used.
Both were tested, and of course the latter leads to faster convergence. It should be noted that, in
any case, for compressible subsonic flow fields, the simple compressibility source method is a fast
and accurat computational code.
The source field has two many advantages with respect to differential equations: first, the system

matrix is unchanged during the iteration process, so that it might inverted or factorized once as for
incompressible calculations.

The second advantage is that source strength is significant only in two conditions, i.e. where ve-
locity gradients are large and Mach number is not low. This means that the sources might distribu
ted only in a limited flow part around the airfoil. Furthermore, the source influence on the airfoiT
is inversely proportional to their distance from the contour.
In general, the nose is the most critical part is around the former stagnation point, near the

airfoil nose.
A second point is that source points must be closely placed where Mach number gradients are not

small , otherwise .eir spacing might be larger.
According to the former considerations, it is useful to lay a panel mesh on the flowfield and put

constant strength sources on each panel.

2) THE CHOICE OF THE GRID

As seen, the source field should be devided into elements defined by a grid. This grid has quite
different requirements from a grid for finite-difference calculation, cnd is requiring features simi-
lar to the standard panel methods. Therefore its shape is different from usual computational grids.

We may summarize the main requirements.
a) The grid should be aligned to the airfoil contour.
b) The elements should not be stretched too much in one direction, otherwise "control" points may

lay close to singular points
c) Grid should be finer where larger density gradients are espected, i.e. near the leading edge.
d) The grid should include only thb significant part of the source distribution in a simple form.

After that, there is no requirement for orthogonality of the grid.
After some tests, described in (2), the choosen grid is the following, called a "ballistic analogy'

A first family of mesh lines is made by the trajectories of points "shot" in direction normal to
the contour from panel nodes in a quadratic gravity field depending on three parameters. The quadra-
tic form allows to bend forwards the lines in the nose region and afetewards in trailing edge region.
The second family is made by lines connecting points positions at constant time intervals.

The final result is a "C" mesh around the airfoil matching the panel distribution of the Hess-
Smith method. A further "homogenization" of the grid is necessary around the-trailing edge: it can-
cels the-effect of the trailing edge angle.

Figure I shows examples of grid

NAUAO012 GAW2
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3) SOME PRELIINARY RESULTS

After the simple test of fully subsonic flow, which gives fast converging and accurate results af-

ter 3-5 iterations ( I or 2 starting from Prandtl- Glauert correction),tests were made to compare fi-

nal results. Of course, ficticious gas solution by itself cannot he compared to other analytical so-

lutions because they are not correct, and only the final, modified airfoil contour could be compared

in transonic regime. This is a disadvantage, because all the errors of the supersonic flov calcula-
tions are included in the comparison. In the actual case, simple straight segment methoa of characte

ristics and simple Euler integration Od the contour gave not very accurate results.

But despite of those limits, a modified RACA 0012 airfoil was computed with a coarse 1esh FLO-6

(3) code. The agreement was encouraging, although the FLO-6 gave a shock wave. Computed as an overall

momentum oefect, the wawe drag was in all cases no more than one fourth of the on- of the original
airfoil, which is shurely a good technical result.

In the figure the comparison is shown.
it became quite clear that the good results in
subsonic regime and the less good in transonic
could depend by a set of causes, One could be
the parabolic nature of equations along the
sonic line, while the method basis assumes
elliptic equations, but the others could be re ,ACAM12 IACH:.8 AVA:O. PM8=3
lated to the rough approximation of the super-
sonic region

So a further investigation work regarded the '.

three problems of smoothing the sonic line she
pe, improving the supersonic calculations by ai
quadratic approximation of the characteristics
and introducing a second-order predictor-cor- ,. H va
rector scheme for the contour integration.

In order to avoid n9erical accuracy embed- ..
ded in the potential-flow code, an exact Jou- "

kowsky airfoil and the Prandtl- Glaue,-t cor-
rections were used at this stage. , .

In this way it was possible to decouple the ,r ,

numerical errors of the supersonic 
flow calcu-

lations from the source field code.
The sonic line was smoothed by Fourier-series ropresentation, filtering high order harmonics in a rea

sonable way. Good results were obtained retaining no more then 20 terms (4).
Of course, because the Pranded-Glauert correction is not exact, this kind of results could not be

compared to transonic code calculations, but the effect of a much smaller error in the closure of the

contour at the last supersonic point was an indication of the increased accuracy.

4) PROBLEMS OF CONVERGENCE

Stating that the computational code was at a reasonable developement stage, it was decided to inves-
tigate the convergence far beyond the 5-10 Iterations used up to that point. A wide range of Mach num-
bers and lift coefficients was therefore investigated.
A tipycal "strange" convergence history is shown

in the figure. It is not only strange in aspect, NM26 ISH W

but also because it seems to be "FORTRAN compi-
ler dependant" , as-with a change of the compi

ler all oscil.ations di,;appeared in some cases!
The convergence is verj fast in the first

steps, but at some point there is a sudden di-

vergence followed by a further convergence, in
some cycle-like behaviour.

In all tests no relaxation was attempted, to
have an insight into the problem.
It might be supposed that a simple .5 relaxa

tion parameter could avoid many problems, but
the fact that oscillations in convergence appj
ar only at a number of iterations probably lar
ger than any required in a design procedure
has suggested to fix simply the number of Ite- - __.. . .
rations required in the computation.
The figure shows one of thp -st critica!
convergence histories, while in many cases therL is not any oscillation.
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5) COMPARISONS AND RESULTS

After-the first adjustement of the computational code, it was tried to modify systematically a
set of airfoils for transonic operations.

First tests were made at low lift coefficients, in order to have a sonic line monothonically
increasing in the X axis direction in its first part. On the other hand, at high lift peaks in the
airfoil nose, the sonic line turns forward putting a lot of geometrical problems in the supersonic
calculations. They are simply problems )f code organization and not conceptual problems regarding
the nature of the solution.

The convergence was fast and after no more than ten iterations it was attempted to modify the
airfoil.

Of course, one does not know "a priori" the new airfoil contour, so that before the end of the
computation it is impossible to know if the supersonic part of the flow, layng betveen the sonic
line and the modified contour is effectively shockless.
In any case, there is a remarkable tendency to crossing of characteristics in the inner part of

the airfoil, both close to the beginning and to the end of the sonic line. But in no case it was ne
cessary to change the choice of the ficticious gas parematers, while using the laws suggested by
Sobieczky (1). Only an attempt to use the ficticious gas of Nakamurc (5) gave significant shocks.
The reasons of that were not investigated and the laws of Nakamura were no more attempted.

Comparisons with FLO-6 calculations gave again a shock-like behaviour, in the sense that around
the end of supersonic regions there is, at least, a steeper pressure recovery as in the design
calculations. An attempt to refine the FLO-6 mesh led to pressure oscillations, probably due to the
insufficient experience in the use of this code by the authors, so that it is difficult to say
whether the pressure gradient is a numerical error of the comparison code or not.

Further comparison with an Euler code calculation will be attempted but is not available up to
now.
In any case, the comparison of computed original airfoil and the modified one by means of the same

code gave a strongly reduced wave drag. From a technical point of wiew it is shurely a success.
It is difficult to evaluate data for a computer time estimation for tvo reasons. The first is that

the code is not optimized in the informatics sense of wiew, and the second is that, due to the lack
of central memory of the virtual machine on which computations were performed, it was necessary to
recompute the influence coefficients of the field sources at each iteration step, while with a more
powerful machine they could be easily kept in the central memory. Of course, the effect on computa-
t,onal times is very large.
The following figures show some of the comparisons.

A Good Iteration Scheme

, tACADD12 P8035L UACII:.S ALFA=1O PS08:.Ol

I".

II-

A Refined sonic line and its characteristic net

fi 1 I I
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6) STUDIES FOR A 3-D METHOD

Although the method was implemented for airfoil design only,a set of studies is starting for exten-
ding it either to axisymmetrical or fully three- dimensional cases.
An axisymmetrical code will require the evaluation ef elliptic integrals for the calculation of the
velocity derivatives, and was not attempted .

3-D models will require a difficult grid c lculation, so that it was suggested to see if it would
be possible to work in a rectangular frame.

As first, it was seen if it could be possible to "
write a computational code in which panels are insi Press. Coefficient

de the contour and parallel to the chord ( or X axis
'4"

in some case) while the usual normal velocity con-
dition is retained on the contour. The fact that the Z

singular points at the end of panels are not coinci-
ding increases the level of singularity. After a 0 " ,
long work (6), it was shown that it is possible to , .3 .4 .3 * i . .9 2 x/c
find a solution and it is to represent the airfoil -.2- +

nose by matcing it to a Rankine ogee and to inclu-
de its source field in the onset flow. In this way ,4

panels mean only a small correction and the calcula Present work
tions are of the same accuracy as the usual panel -4-
methods. Tin Airfoil
The figure shows a typical result as compa,2d to -.

the Hess-Smith and thin airfoil results.
Keeping that in mind, it would be possible to extend the method to threedimensional flows.

Of course, the method of characteristics is no more the best one, but the method proposed by Ziqiang
and Sobieczky (7) seems to be promising .
This is the actual stage of the work and no further result is now available.

7) CONCLUDING REMARKS

The use of field sources instead of complex transonic code was successful in ficticious gas airfoil de-
sign and is a good alternate to finite-difference codes.

In principle, the following advantages might be seen;
a) there is a less strict requirements for grids, both in geometrical properties and extension into

the field, as compared to finite difference codes,
b) there is only one , rather small size matrix to be solved and is behaviour is well known, as it

is the Hess-Smith method matriw with all his troubles and its advantages,
c) the method is fast converging towards a good technical approximation, with no "tricks", although

large iteration numbers pose some convergence problems,
d) we do not see any large difficulty to extend the method to wing design.
Of course, further investigation is needed, mainly from the point of wiew of an Industrial use, but the

main part of the research might considered to be well-established in two dimensions.
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SUBSONIC AND TRANSONIC BLADE DESIGN
BY MEANS OF ANALYSIS CODES

R. A. Van den Braembussche, 0. Lionard, L. Nekmouche
Yon Karman Institute

Rhode.Sant.Gerse, Belgium

ABSTRACT
An iterative procedure for cascade blade design, using a direct flow solver and a blade geometry modification algorithm is

presented. The procedure starts with -the analysis of a given cascade geometry using an existing flow solver. The difference
betwten the calculated velocity distribution and the required one is used as an-input for the modification algorithm. This
procedure results in the definition of a new blade shape for which the calculated velocity distribution is closer to the desired
one.

Examples for both subsonic and transonic flow are presented and show a rapid convergence to the geometry required for
the desired velocity distribution. The main advantage of the proposed method is that existing analysis codes can be used, for
the design and for the off-design analysis.

Some restrictions which have to be imposed on the required velocity distribution are also discussed.

LIST OF SYMBOLS

c chord-length 7 strength of a vortex
H 'aupling factor r circulation
M Mach number A blade stagger angle
n., n. local normal-vector compofients p density

N number of vortices on the contour a solidity
P total pretsure , vortexz-oordinates
p static pressure
a curvilinear coordinate subscripts
t pitch of the cascade n component normal to the-blade
T. total temperature t component tangential to the blade
IV velocity 1 cascade inlet
a',y local coordinates of the blade contour 2 cascade outlet

greek symbols superscript

,9 local slope of the blade-contour
Ps inlet flow angle (with resp. Z) req required

1%2 outlet flow angle (with resp. W)

1. INTRODUCTION

In order to improve the performances of a compressor or a turbine, it is important to design aerodynamically efficient blade
profiles. In the past, this was done iteratively by successive modifications of the blade geometry-and experimental verification
or by direct flow calculations. However, depending on the designer experience, such a process can be very time consuming
and-can result in increased design costs. Moreover it-does not always lead to the expected results.

A more efficient- approach is the use-of inverse design methods. Starting from a given velocity or Ps'.sure distribution
imposed on the two sides of the blade, the calculation results in the blade geometry. The classical boundary conditions of zero
through-flow at the blade-wall, used in direct solvers, are replaced by other boundary conditions which impose the required
velocity or pressure distribution. The direction of the flow is an unknown and the velocity can hae a component normal to
the wall. The normal velocity component is then used to modify the bladt shape. -Depending on whether or not this normal
compenent-goes in or out the computational domain, the blade wall-has to be treated just as a subsonic inlet or outlet, and
complementary boundary cooditions may be-needed.

Alternatively, a direct calculation code can be used as the base of an inverse method, if it is coupled with-a suitable-blade
modification algorithm. The modification algorithm proposed here is derived from the singularity theory and-is based on the
superposition principle. It is therefore correct only for incompressible potential flows, however, experience has shown that
it can also be efficiently used for compressible- flows. The way in which the blade geometry is calculated may-be physically
less accurate than that deried from the modified boundary conditions, it has however the-great advantage of simplicity,
allowing the use of accurate and efficient direct solvers which have been developed in the past and-are-well documented in the
literature. Using-the inviscid direct solver, the resulting geometry includes the blade and the boundary layer displacement
thickness, while the use of a Navier-Stokes solver would result directly in the blade-geometry.

Another advantage of the use of a direct solver is that, once the blade geometry has been determined, the off-design inalysis
can be carried out using the same flow solver.
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2. BLADE DESIGN- PROCEDURE

The method start from an initial approximation of the blade geometry which is analysed by a direct solver. If the calculated
velocity distribution is not close enough to the required one, the initial blade geometry must be modified.

Thi is done by distributing vortices on the blade contour , the strengths of which are defined in such a way as to adjust the
local velocity to that required. The blade shape is then modified using an algorithm based on the transpiration method or by
recomputing the position of the wall streamline. The new blade shape is not yet the final one since the required tangential
velocity was imposed on the previous blade approximation.

Once the blade shape-has been modified, a new velocity-distribution -is calculated-by the flow solver. This-procedure of
modifying the blade geometry and calculating the velocity-distribution is repeated until the difference between the required
and the calculated- velocities is small enough. The procedure is summarised in-fig. 1.

3. BLADE MODIFICATION ALGORITHM

The blade modification algorithm consists of two parts:

* define a vortex distribution on the blade contour. This is done to modify the tangential velocity to adjust it to the
required value; it allows the calculation of a normal velocity component;

* use the normal component of the velocity to define a new blade shape.

3.a. Calculation of the Normal Velocities

The actual modification- algorithm makes use of the singularity theory to modify the tangential velocity at each point of
the blade contour where it may be required.

The first effect of a vortex distribution is to create a difference between-the tangential velocity at the outer and the inner
part of the contour :

W. -- Wa::y (i)

this difference being equal to the local vortex strength, Moreover, the flow field-induced by-the-vortices must be :hefined it
such a way as to obtain zero tangential velocity inside the contour as a kinematic condition. Therefore we have.

Wt. = -f (2)

If we want to increase or to decrease an already existing velocity locally at the outer-side of the blade, a vortex can be added
with its strength defined as :

AW= -' (3)

or
W - t=" (4)

A second effect of this vortex distribution is-the creation ofa velocity normal to the blade contour, which for a cascade is
given by :

I sinh (5osfl+sinYsiafl (211 cosh X - cos Y
with:

where ,i are the vortex coordinates and z,y is the location where the value of W, is calculated.

This normal velocityflow field must be superimposed with the velocity field calculated by-the solver.

The discretization of (5) for N intervals results in

N . .

W.(i) = , H(iJ)-(j)i)s(j) (7)

with 
.H(i,. siuhXeosf64-sinYsin(8

cosh X - os (8)
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Calculation of the normal vclocities=W, at the-N positions where the vortices are located-results in the-following linear
system ofT' equations:

W.(2) H(2, 1) 0 ... H(2, N) ,1'(2)

, W,.(N) H(N, 1) ... H(N,N -1) 0 )k7 '(N))

with
)= -y ( )As() •(10)

Unfortunately the matrix H has a zero diagonal since a vortex has no contribution to the local normal- velocity. This can
give rise to a wary velocity distribution-since two adjacent vortices 7(i - 1) and 1 (i + 1) of the same sign and equal stength
induce zero normal velocity at the point i.

Since a vortex cannot create flow, the total mass flux induced by each vortex across the dosed profile must be equal to
zero. Therefore we have :

o W, =ds 0 for each vortex (11)i orJ

RH(,j)(j), (i) = 0 j=1...N (12)

In order to correct the numerical error introduced by the discretization, a normal velocity is calculated by (11) and added at
each point to that calculated using (7).

3.b. Modification of the Blade

Two models can be used to define a new blade shape. The basic procedure is to calculate the new position of the wall
streamline resulting from the superposition of the W flow field and the W flow field.

In-the transpiration model, the old blade wall is considered as porous with a normal velocity going trough it. The mass
balance is applied in the cell delined by the points-(i) d,(i- 1 and (i - 1)- as shown in fig. 2a.
This results in :Sd(pW, An) = pW.ds (13)

or in discretized form 

=

AnpWa),_, + A (PW)+Pw),i - npW (14)
- 2

Expression (14) allows the calculation of the ahift Ani if Ani. is known.

The streamline model calculates the position of the new blade wall by setting -this wall parallel to the local velocity
W= W-W,, as-illustrated in fig. 2b.
This results in A

An =J. ds - d s (15)

The discretized form of (15)-is :
" a' zaa As dn }

dd 2d + .A fdn dn n.

yp- - y;- = yf" -yf"' + T ,,,+T, ny (16)
S 2 Ldsi-i dsJin,(6

4. RESTRICTIONS ON THE REQUIRED VELOCITY DISTRIBUTION

Blade designs in which the required velocity is obtained from the analysis of an existing cascade do not show any particular
problem. The method rapidly- converges to the correct blade shape.

However, solutions for blade designs to he derived from arbitrary section and-pressure side yelo6ty-distributions do not
always- converge. This is related to-the problem of the existence of a solution. The required -velocity distribution must be
compatible with the free stream conditions upstream and downstream of the cascade and must result in a realistic blade profile
(dosed with a positive thickness). These constraints generate restrictions on-the required velocity -distribution, analytical
expressions for which are avails !e only-for incompressible poential flow- over isolated airfoils and cascades; see fl] and 12].
Expressions for the .onstraints cannot b, derived for the comp.essible flow of a peifect gas, but-their existence can be inferred
from the fact that the incompressible flow case is a subcase of the more general compressible flow problem.
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A solution can-be obtained by introducing some freedom into the prescriLed velocity distzIlution, expressed by some
parameters relating the velocity distribution to the free stream flow conditions. These parameters t, . then modified until the
prescribed velocity distribution corresponds to a physical solution (3].

Another way to obtain a solution is to modify some geometrical parameters of the blades and the cascade such as pitch,
stagger and trailing edge thickness.

The method presented should not suffer from problems with contour intersection because the blade is defined by streamlines.
Contour intersections have been observed iccasionally for very thin blades during the first geometry correction, when the
blade modification is important. These are due to numerical errors that result when integrating the streamlnes and can easily
be avoided by introducing an under-relaxation factor.

Experience has shown that some simple restrictions on the desired velocity distribution can oe defined. The blockage
created by the non zero blade thickness requires the average prescribed velocity at the leading and the trailing edge to be
higher than the free-stream velocity upstream and downstream of the cascade. Violation of this condition will prevent the
method from converging,

Increasing or decreasing the average velocity at leading and trailing edges allows the local blade thickness to be increased or
decreased. If an inviscid solver is used, the trailing edge thickness will also include the boundary layer displacement thickness.
This boundary layer displacement thickness can be calculated in advance since the required velocity distribution is known.

Similar restrictions also apply to the velocity distribution between leading and trailing edges. These are more difficult to
formulate because they depend on the local-flow direction which is not a priori known.

Other problems-arise from the fact that the outlet velocity is not known in Ldvance and that the Tire Marching Euler
solvers require an outlet boundary condition (static pressure, velocity or Mach number) to be specified on the downstream
boundary. However, these outlet conditions can be-calculated from the required velocity distribution and the-continuity
equation before starting the inverse calculations.

The circulation around the blades is calculated from

r = Wrds (17)

and-is related-to the inlet and outlet tangential velocities by

P (W 2 sinfis - W, sin lP)t (18)

The upstream velocity and flow angle are given in the input data.

The downstream axial velocity component-is derived from the continuity equation :

pi W cos A = PW2 cosSA (19)

The density at the outlet is a function of the outlet static pressure and therefore is a function of the unknown outlet velocity
W2. For this reason, an iterative procedure is used to solve equations (17) to (19).

The outle. velocity is needed to verify if-the required velocity allows for a slution and, if a Time Marching solver is used,
to calcslate the static pressure imposed as the boundary condition downstream of the cascade.

The procedure just described is valid only for irrotational-flows and is therefore not exact if shocks are present,

5. NUMERICAL-EXAMPLES

Fear examples are presented to demonstrate the method. Two examples show the results obtained when the incompressible
potential flow method, descibed in 14], is used as a direct solver. The other two examples make-use of the Time Marching
Euler solver described in 15J. Each- solver has -been used to design a compressor and -a turbine blade. One turbine blade,
designed for an outlet Mach number of 1.2, has also been analysee' for a lower outlet-Mach number to demonstrate the change
in performance at off-design.

The first e -ample demonstrates the procedure in the design of a compressor blade for incompressible flow with the required
velocity distribution shown in figure 3a. The calculations use as a first guess a NACA-65(18Ais)10 blade at zero stagger (fig.
3b), The ratio of local velocity over inlet velocity obtained -from a first analysis at l, = 30 deg. and a pitch.chord ratio of
0.9, is shown in figure 3c. The velocity distribution is very different from the required one.

For the same inlet air angle and pitch-chord ratio-a new blade shape, shown-in figure 3d, is ebtained after 40 iteration-.
With a-b!-,de-,ti-c- . . .. 4p.. til,. C"U time on-a VAX ibu for-this-example is 55 sec.. This new geometry is very
different from the first guess (fig. 3b). The stagger angle has increased from 0 to 4.6 deg. and the new blade is much thicker.
This large trailing-edge thickness results from-the required velocity distribution and accounts for-both the geometrical blade
thickness and the-boundary layer displacement thickness on the pressure and suction side.
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The potential flow calculation method does not account for ,'.kes and the blade contour is therefore closed by rounding-off
at the traL'sg edge The blade velocity distribution agrees very well with the required one as shown in figure 3.e. Discrepencies
are observed only at the last two points on the pressure and suction side, at the trailing edge round-off. The local overshoot
of the-velocity is due to the flow acceleration around the thick circular trailing edge and cannot be avoided with potential
flow calculations.

The second example demonstrates the procedure in the redesign of a turbine rotor hub section. The velocity distribution
on the intial blade is compered to the desired one in figure 4a. The last one has a -onsiderably larger loading thau the initial
blade and the pitch.chord rstio has been increased proportionally to obtain the same outlet flow conditions.

The new blade-shape, obtrme2d after only10 modifications, is compared to the initial shape on figure 4b. Also shown are
the initial and new cascade parameters. Figure 4c shows-the comparison between the required velocity distribution and that
corresponding to the-final blade shape. Discrepencies are observed at the leading edge pressure side where the calculated
velocity is higher than the required one. This is a result of the special conditions discussed in the previous chapter. In
particular, the mean value of the required pressure and suction side velocity at the leading edge is lower than-the inlet
velocity. rhis would imply- a negative blade thicknes negative blockage). The discrepency does not disappear when the
number of iterations is increased.

The second solver to be demonstrated -s a Time Marching procedure that solves the Euler equations for transonm: flows in
axial machines. This uses a corrected viscosity scheme with a finite area discretization. The calculation is carried out for a
section of constant radius and no provision is made for a variable streamtube thickness. A full theoretical description of this
solver, the systen. of equations, the discretization of the physical domain and the description of the input data are given in
reference 151.

The modification method coupled with this solver does. not satisfy the-Euler equations since singularities are used, and is
therefore not exact. However it-can-be assumed that the correction of-the blade shape is in the right direction,-and a rapid
convergence to the required blade shape is observed.

Using the flow solver [51, this method was first demonstrated with a requsred velocity distribution calculated from a classical
NACA-65 (12A2I&6)I0 blade. The NACA-65 (12Aio)10 blade was used as a first guess. The geometras of-both blades are
compared in figure 5a. The-velocity distribution on the initial blade and the required velocity distribution are sh)wn on fig.
5b.

The flow conditions are . P = 1.33 bar, To, = 341.5 K, _8 = 45 deg, p2 = 1.173 bar. The cascade geometry is defined by
A = 3i deg and a = 1 for both blades.

Figures 5c and 5d show the convergene of the calculated velocity. Good agreement-with the prescribed velocity distribution
is evident in fig. 5d, except for the leading edge and the trailing edge regions. This can be due to the fact that the discretization
with a H-type grid is not suited to describe accurately the flow-field in these regions. The comparison-between the final blade
geometry-and the NACA-65 (12 A21a)10 is shown in figure Se. The calculations are made with 71 stations-in the streamwis-
direction and 21 points in the pitchwise direction. The CPU time on a VAX 780 was Pbout 5 hours for 12-modifications.

The-second example demonstrates the-procedure in the design of a- turbine- blade. The starting geometry is that of-tie
workshop VKI-LS 82-05 [6]. The flow conditions are , P, = I bar, To, = 278 K, ,6 = 0 deg, Mz = 1.2. The cascade geometry
is defined by A = -60 deg and cr = 1.25.

Problems have-been encountered modifying the suction and pressure surfaces at the same time, since there is a strong
interaction-between-both surfaces. The expansion waves starting from the pressure side traibng edge interact with the suction
side.

To work around this problem, only the pressure side velocity was imposed during the first modifications. This reduces the
expansion in the trailing edge region. Figures 6a shows the starting-velocity distrib,,ton and thr required velvcity distribution,
while figuzL- 6b shows the velocity distribution after-2 modifications.

Once the required velocity distribution has been obtained on the pressure side , a similar -procedure has been applied on
the suction side, in which we impose simultaneously -the suction. and pressure side velocity distribution. Six modifications
were needed to obtain the required suction side velocity distribution. Figure 6c shows the final velocity distribution while the
comparison of the initial and the final blade geometry can be reen in figure 6d.

Using- the same Time Marching solver, an off-design analysis has been made for this finaipblade. Results are shown on
figures 7a for M2 = 1 and 7h for-Ms = 0.8. One can see that a-blade which has been optimized for one outlet Mach number
does not vecessarily give a good velocity distribution at other outlet Mach numbers.

6. CONCLUSIONS

An iterative dsign method basW on both potential-and Euler type solvers and a geometry modification algorithm has
been developped. Good results have been obtained for both subsonic and transonic cases. The modification is fast due to its
physical basis, so that a hmted number of iterations have to be performed. This modification algorithm can be coupled with
any direct solver.
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A COMPUTATIONAL DESIGN METHOD FOR SHOCK FREE
TRANSONIC CASCADES AND AIRFOILS
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SUMMARY

A computational method has been formulated for efficient inverse design of blading. The surface pressure
distribution is specified and, as a result, the geometric shape of an airfoil or cascade blade is obtained. A steady, two
dimensional Euler code for transonic flow has been implemented. The code uses a finite volume technique on a
computational grid which is based on assumed streamlines. Tite grid is being updated during the solution procedure.
The blade contour , being a streamline, corresponds to a part of the solution domain boundary where the desired
pressure distribution is given . Free parameters are introduced into the prescribed pressure distribution and this
satisfies the closure -constraints. Examples based on redesign o. known shapes are presented.

LIST OF SYMBOLS

A , B area vectors OL angle of attack; inlet flow-angle
An area normal to velocity An displacement of current streamline node
C axial chord Ap density change
C, C2 multiplication factors of pressure 4 farfield velocity potential

distribution constraint 7 specific heat ratio
CL lift force coefficient r circulation
Co drag force coeficient u ertificial compressibility coefficient
C, axial force coefficient nl pressure on streamline faces of a cell
Cy pitchwise force coefficient p density
f, f2 cell geometry functions E source strength
gi g2 cell geometry functions 0 angular polar coordinate
F arbitrary shape function
0 arbitrary shape function
H stagnation enthalpy
I unit tensor
I grid Index along a streamtube
j grid-index for streamlines
in mass flow rate
M Mach number
n. ny components of unit vector

normal to current streamline
P pressure at inlet and outlet

surfaces-of a cell
T prescribed surface pressure
s surface arc length
S pitch
y speed
V velocity
x axial coordinate
y pitchwisa coordinate

INTRODUCTION

The aircraft and missile industries are in constant need of developing low drag -high lift -highly maneuverable,
versatile transonic configurations with optimal design characteristics. The computational methods have been
developed primarily to treat the direct problem-of determining tile load characteristic jf a prescribed shape. Using

combination with a numerical optimization f minimize an aerodynamic object function are appearing to be useful
design tools 11,2,31 although they require excessive -omputational effort. Beside minimizing the difference between
computed pressures-and the target pressure distribution-as a basic design- approach, these methods can minimize other
aerodynamic quantities such as drag.

The Inverse problem is associated with the determination of the airfoil section shape that will produce a
preassigned pressure loading- or surface speed distribution. For incompressible flow , Lighthill [4 demonstrated that
prescribed speed distribution can not be arbitrary and certain constraints must he imposed on this distribution.
Similar constraints were expressed by Woods 151 for compressible, subsonic flow. Recently Volpe and Melnik [6
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emphasized on the necessity of the constraints on prescribed pressure distribution for transonic inverse design. Using
this definition, the inverse design procedure finds-an airfoil shape that produces a desired pressure as closely as
possible.

Computational design procedures for transonic airfoils have been in use for many years. Hodograph design
methods were developed by Niouwlend (7), Bauer,Garabedian and Korn (3), and Sobieczky (9). In spite of their
usefulness in development of shock-free airfoil sections, they require too many input parameters and have no direct
control over geometry and aerodynamic quantities. Hodograph methods and fictitious gas methods 110,11] are oriented
toward achieving shock-free designs, but don't address the problem of determining shapes which give prescribed
pressure distributions. In this respect, they are categorized as indlro,:t design methods. More recently an inverse
design procedure (121 for subsonic airfoils ,based on hodograph technique, has boon developed to determine the shape
that gives the prescribed pressure distribution.

Tranen 1131 used the potential equation as a first attempt to solve two-dimensional transonic inverse airfoil
problem. Similar approach by Volpe [141 in developing an inverse -method -for two-element airfoil systems. Carlson (15]
used Cartesian coordinates in the physical plane irstead of using a body forming mesh in the circle plane. However
all those attempts are not well formulated because the Issue of constraints are not addressed completely. Role of
constraints are discussed by Volpe and Melnik (61 In a more recent potential flow approach.

Transonic inverse procedures for three-dimensional wings have been developed by Shankar, Malmuth and Cole
(161 whose method is based on modified small disturbance theory, and by Gaily and Carlson 1171 whose method is based
on a potential solver including a finite volume formulation.

This paper presents results obtained by a method similar to a design method developed by Giles and Drela
(181. In concept, it has similarities to both the streamline curvature analysis methods and the full potential inverse
design methods. It is based on quasi-one-dimensional Euler solution of streamtubes. Using a solution domain as
considered to be formed by a bunch of streamtubes, two-dimensional transonic cascade and isolated airfoil problems
are handled. The finite volume techniques (19,20] are based on numerical discretization of conservation equations
written in integral form. The flow domain is divided into several elemental control volumes (areas in 2-D case) which
exchange mass, momentum and energy. In the present method, -finite- volume cells are fitted along the streamtubes.
Therefore two of the faces of a-cell correspond to streamlines and the flux will exist only on other two faces. The
discretized Euler equations are linearized by a Newton-Raphson method and resulting system of linear equations Is
solved implicitly using a Gaussian elimination technique. The system of linear equations mainly corresponds to the
streamwiso momentum conservation on the cell basis and a condition of coupling of streamtubes by the pressure
existing in their streamline interface. The unknown variables are both the density of fluid and the- position of the
streamlines. For inviscid flow, slip condition implies that the-blade contour is a streamline. By imposing the target
surface pressure distribution , on the streamlined grid boundary representing the blade, the code will find the blade
geometry through the updating-of streamline shapes- together with the flow field.

FORMULATION AND DISCRETIZATION

Integral forms of mass,momentum and energy conservation laws are used for a steady, inviscid flow of a
compressible, non-conducting fluid. These are

SpV .di-0 ()

J(pVV + P) -di -0 (2)

S( piH ) - di - 0 (3)

where surface integral reduces to line integral along the closed curve bounding the flow area in the case of two-
dimensional- flow modelization. These integral equations are discretized by applying them on a-conservation cell of the
finite volume (area) method.

A part of initial grid-and a conservation cell are shown in Fig. 1. A conservation cell is formed 5y connecting
the mid-points of line segments- between grid nodes. The geometry of the coil is completely known in terms of nodal
coordinates of the grid at a solution step. If grid lines are labeled as j-constant lines and i-constant lines ,where I
and j are indexing paramoters, j-constant lines are assumed-to be streamlines. In the present method, one of the main
task is to update the grid so that it would represent the actual streamlines when the algorithm converges to the
solution.

The-geometry of a conservation cell and the variables on Its surfaces can be &een in Fig. 2 . Since the upper
and lower surfaces correspond to streamlines, there is no flux through them and the only contribution from these
surfaces is the pressure force term in the momentum equation. The -density p , pressure P , and speed V are
defined to be uniform on inlet and outlet faces of the conservation cell. The direction of velocity is defined by
taking the average direction of upper and-lower streamline segments of the conservation cell. The discretization is
possible if a different pressure variable IT is defined on the streamline faces to descrle the-pressure distribution in
the pitchwise direction. For a consistent discretization of the pressure an additional constraint equation is necessary
for each cell.

N+ '- - F,'rP 2  (4)

This condition Implies that the average of 1I . and 11- and the- average of P, and P2 are same and the average
represent the pressure value for the cell center if it is to be-located. In the case of Infinitely small mesh size,
pressure values on the sides of the conservation cell become almost the same. However for finite mesh size, these
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four pressure variables have different values and should satisfy a consistent pressure distribution in the flow
domain given by Eqn. 4 .

By discretizing the mass conservation (Eqn. 1) on the conservation cell , an algebraic relation expressing that
mass flow rate remains-constant along a streamtube Is obtained

'a -P 1 V1 AM1 - p2 V2 A22  (5)

where A2 is the area (length in two-dimensional case) normal to velocity.

The discretized form of the momentum equation becomes

-p1V,A.,iV + p2V2A,22V + PIAI + P2A. + I1+B+ + 11-5- - 0 (6)

where A and B are area vectors shown in Fig. 3 .

Discretization of the energy conservation (Eqn. 3) gives the following algebraic equation:

1  , P + V2

2  (7)
2 Y-1 P- 2

As it is expected for an adiabatic steady flow, Eqn. 7 states that the stagnation enthalpy remains constant along a
streamtube.

The momentum equation (Eqn. 6) is in vectorial form and can be expressed as two scalar equations - one in the
streamwiso direction which contains pressures P, and P2 , the other in the normal direction which contains pressures
1I
+ and 11-

'h(VI fl-VIf2)+P -PI-0 (8)
in(VI &I -V2 g2) + H--H

+ - 0  (9)

where f, , f2 g and g2 are functions ofgeometry.

At a solution step, all geometric and state variables are input as-the initial -solution. For a specifiedmass flow
rate and stagnation enthalpy, new velocities are computed by using the continuity Eqn. 5 and new " P " pressures are
obtained from the energy equation (Eqn.7). Momentum equation In the normal direction (Eqn. 8) and the constraint
relation of auxiliary pressure (Eqn. 4)-are solved simultaneously to-determine new values of 11- and ll*. All variables
(except the density and the geometric ones) are assigned to their new values . The computation of these variables in
the existing iteration step is done by sweeping the conservation cells- along- each streamtube. While this procedure is
applied to the next (adjacent) streamtubes, i pressure values on the interfacing streamline has already been updated
at the previous streamwiso sweep. Different values for I1-, and Il+1 are obtained of a nonconverged result and
this violates the-necessary condition

n -, - 11+4., - o (10)

which states the compatibility of pressure at the common boundary of two adjacent streamtubes (Jth and j-1jth). The
streamwise momentum equation (Eqn. 9) is the other equation which has remained unsatisfied at a nonconverged
iteration stop. The compatibility condition (Eqn. 10) and the streamwise momentum equation (Eqn. 9) give residuals
which vanish as the- algorithm converges. These equations are linearized by using Newton-Raphson method. In their
linearized form , the perturbation (change) of the variables are given by Ap,-Av, AP, All, AAn etc... All change
parameters can be expressed in terms of grid node displacement An -and density change Ap where the displacement
describes the change of streamline position in the direction normal to current- streamline. In this process , linearized
forms of governing algebraic equations and geometrical relations are used. Therefore the resulting system of linear
equations contains two equations with two unknowns (Ap and An) for each computational cell. At the boundaries of
solution domain, the boundary ccndition should replace Eqn. 10.

There are some additional constraints or conditions to be satisfied such as the closure constraints for inverse
design calculation or Kutta conditon for analysis calculation. The linearized forms of the constraint equations are
additional linear equations to be solved fIr the additional unknowns that are the changes of variables such as the
free parameters of specified pressure and the circulation around the airfoil. Once the system of linear equations is
solved the unknown change parameters (perturbations) are found. Using An the new grid node coordinates are
computed from

x,- x + n. An (la)

y ,.- y + n, An (llb)

where n. and ny are directional cosines of the unit vector along which the node is allowed to move.

The new density Is calculated from:

pm. - p + Ap (12)

ARTIFICAI, COMPRFSlIRIIITY,

In the present method, steady Euler equations which are essentially elliptic are solved in the conservation
form. In the supersonic regions, it is necessary to include some form of supersonic upstream dependence to change
the character of the governing equations. Therefore, artificial compressibility is introduced, The concept of artificial
compressibility was first introduced by lafez ot al. 121] for the solution of transonic full potential equation. A
similar approach was used by Wormon [221 for quasi-one-dimensional Euler equations. In principle, density is modified
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in supersonic regions using a discretization In the upwind direction as

P2 - P2 - A (2 - PZ) (13)

where ju is a function of local Mach number and has zero value in suesonic regions. This density modification is
equivalent to the artificial viscosity implementation. Strength and location of shocks are calculated correctly without
any special treatment such-as-shock fitting.

BOUNDARY CONDITIONS

CASCADE

A typical numerical domain for cascade flow is made up of one blade passage and extends approximately one
chord upstream and downstream as shown in Fig. 4. Boundaries AB, EF, CD, and GH are assumed to be stagnation
streamlines. A grid node on AB and the grid- node on EF having same streamwise station index i acquire the same x
coordinate while their y coordinates will . 'er by the pitch. Hence both grid points would have equal nodal
displacement An in the same direction after t solution step always keeping the stagnation streamlines parallel. Also
pressure 11 on these grid nodes are forced to be equal using Eqn. 10 . Hence, periodicity of the flow on AB-EF and
CD-CH Is satisfied.

At the upstream boundary AE stagnation enthalpy and stagnation density are specified for each streamtubo.
Besides these flow variables the first segments of grid lines (streamlines) are constrained to be parallel to each other
using the specified inlet flow angle 'inlet slope.) Similar parallelity condition is also applied to the last segments of
the streamlines. At the downstream boundary , the common slope is a variable whose change ASot is an unknown to
be found in a solution step.

For inviscid flow, slip coneition on the wall-implies that the wall itself is a streamline. In the present method
set of j-constant lines correspond to assumed streamlines. The grid locations and the solution domain are not fixed,
they may move during the solution. In fact, grid pol, s and therefore the shape of streamlines are computed at each
iteration step. Therefore initially assumed blade contojr as a streamline will change during the computation. Once the
convergence is obtained the updated boundary streamline becomes the-designed blade surface for which the-target
pressure distribution is specified. Hence the only boundary condition to be employed on the wall-shaped boundary
(BC and FG) is to specify target surface pressure distribution. However this target pressure distribution is not
arbitrary. It was shown by Lighthlll [4) that- the prescribed surface speed distribution for incompresible flow must
satisfy three constraints. Volpe and Melnik [6] have pointed out the necessity and importance of similar constraints
on surface pressure distribution in the inverse design of transonic- airfoils. In the present method three -constraints
have been imposed at the grid nodes corresponding to leading and trailing edge stations-on the suction and pressure
surfaces. These constraints on-node displacements are

Anbsss -0 (14)

AnLr ps - 0 (15)

Anrps - Anyr.ss (16)

as shown in the Fig. 5. The first constraint (Eqn. 14) prevents the rigid body motion of whole domain. The second
keeps the specified pitch unchanged (or imposes th- closure of leading edge.) The third constraint (Eqn. 16) imposes
the closure of trailing edge. The addition of the linearized forms of these constraints into the overall equation set,
make it necessary to describe three unknowns (or free parameters to be updated.) One of them-is the outlet slope St,
which-describes the flow angle at the far downstream boundary. The-other two free parameters appear in the target
pressure distribution. The-specified surface pressure distribution T(s) is imposed to the solution in the following
form.

fi(s)-- O(s) + C1 F(s) + C2 G(s) (17)

where-C and- C2 are two new free-parameters (multiplication factors) and where F(s) and G(s) are arbitrary shape
functions of relative arc -length s. Linearization of the boundary condition (Eqn. 17) introduces the-changes of free
parameters AC and AC2 as unknowns. The exact distribution of the pressure Imposed on the blade surface can-be
determined when the solution converges. The pressure distribution obtained at the convergence is referred as
"output" pressure distribution in this study.

AIRFOIL

A typical numerical domain for an airfoil can be seen in Fig. 6 . The flow domain for the airfoil consists of a
bunch of streamtubes as in the-case of cascades. To be able-to make a distinction between the suction and pressure
surface streamlines, the grid is generated such that there are two grid lines coincident along the stagnation
streamline. These grid lines should be observed as separating from each other at the node corresponding to the
leading sdge , one of them follows the suction surface while the other is-following pressure surface. Hence conditions
on upstream -and downstream stagnation lines are the same as the periodic boundary conditions of the cascade flow
case. Therefore nodes (il) and (ij-,,) shown on the Fig. 6 satisfy the following conditions

i, 1 - fli,,, (18.a)

xi. t - xi,., (18.)
YI.t - yIi

On the airfoil surface pressure Is-specified through Eqn. 17 and the constraints (Equations 14, 15 and 16) are
also valid. The circulation r around the- airfoil is used as a free parameter and replaces the outlet slope of cascade
case.
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The !arfield boundary conditions arc based on the farfield potential 0 that is obtained by superimposing a free
stream and a vortex flows as proposed by Ludford 123). This procedure is also used by Giles and Drela 118) In which
they discussed the effect of additional doublet flow on the solution. The velocity potential is taken as

x + Z log r - Z,0 (19)

where r and-Oare-the polar- coordinates of the grid measured from the moment center-of the airfoil. Z is the source
strength which only existr for entropy generating flows. The velocity distribution at the farfield boundary can be
found from this velocity potential. Using the resulting velocity distribution , the pressure II is computed and
specified as boundary condition at a grid node on the upper or lower boundary of the farfield. The upstream and
downstream farfield boundary conditions are treated as in the case of cascade flows. However, the slopes of
streamlines are computed from the farfleld velocity potential and each streamline may have a different slope.

SOLUTION PROCEDURE

The initial solution (i.e. the approximated streamline grid and approximated flow-field) is found to be-important
for the present inverse method. Solution domain for cascade inverse solution was constructed by assuming a blade
contour. The stagnation streamlines were taken as straight lines and extended from the leading edge at the specified
inlet flow angle and from the trailing edge as tangent to the camberline. Far-upstream and far-downstream boundary
lines are then located one chord away from leading and trailing edges in the case of cascade flows and six chord away
from leading and -trailing edges for airfoil- case. Using an elliptic grid generator method developed by Thompson (24)
the initial grid with j-constant lines approximately corresponding to streamlines of Incompressible flow is constructed.
The remaining part of initial solution , i.e. the flow field, is approximated by assigning a constant pressure and
density corresponding a low-subsonic value and a coarse distribution of peed. This initial solution is good enough
for the analysis of transonic flow-and converged flow field can be obtained in 5 to 15 iterations. But starting the
inverse design from this initial solution which has low-subsonic pressure caused excessive accelerations and generally
ended up with a negati o enthalpy near the solid surface. This was probably due to large difference between the
specified transonic surface pressure and -the low-subsonic pressure of neighboring nodes. Therefore before the design
procedure was started, the coarse incompressible initial solution was improved by employing a few iterations- in the
analysis mode from thich a flow field -distribution -for pressure at transonic or high-subsonic level was obtained.
There was-no need to continue the iterations to obtain a converged solution of- the analysis mode.

The analysis mode of the code differs from design mode mainly in the boundary conditions of the blade
contour, instead of target-pressure specification by Eqn. 17,-the rigid wall-condition

Anwall - 0 (20)

was applied.

The system- of linear equations which are obtained after discretlzaton and linearization includes governing
equationi, boundary conditions and constraints. Unknowns for cascade solution are density change Ap,,j at each state
node, An,, at each grid node, and four additional unknowns AC, , AC 2 ,AS ,t , and-AS, which are-the changes of
first and second multiplication factors of the pressure distribution, the-outlet slope and the inlet ,lope. Unknowns-for
airfoil solution are the same except AS, and AS~t are replaced by Az (angle of attack) and Ar (circulation). This
system of linear equations is solved by a direct method employing Gaussian elimination -technique.

RESULTS AND DISCUSSION

For the-purpose of illustrating the ability and accuracy of the present method three test cases were used.
These were an airfoil- test- case NLR 7301 from Ref. 1251 and two cascade configurations; Sanz supercritical propeller
from-Ref. 1261 and flobson-2 Impulse turbine cascade from Ref. 125). The blade geometries and analytical solutions of
these test cases are available in the above mentioned references. These test cases are well known for testing
transonic direct solutions. In the present investigation, these test cares are used for the inverse solution by
redesigning the blades from the specified pressure Jistributions, Calculated geometries were then- compared with the
original (actual) ones, for the-assessment of the accuracy.

HOBSON-2 Impulse Turbine Cascade Test Case:

-t Hobson-2 Is an Impulse turbine cascade for which accurate analytical solution is available In Ref. 125]. The
geometry of this cascade was originally obtained by a liodograph solution to the transonic flow equation. Hobson-2
cascae blade has sharp leading and trailing edges. The cascade produces- shockless flow at the design conditions of
M,-0.575 , cc1-46.

1
23' and-spacing S/C-0.5259 .

Fig. 7 shows original, starting and designed-blade geom'tries. As It is seen fron the figure original and designed
blade shapes are indistinguishable. A specified surface pressure distribution which is the "input" to the program
usually differs slightly from the srfaco distribution resulted over the designed blade due to free parameters
introduced in Eqn. 17. Since the specified pressure distribution Is not an arbitrary one but corresponds to an actual
cascade, in this test case free parameters should be zero in the converged solution. This can be seen in Fig. 8 in
which the specified and the "output" pressure distributions -are almost the same. Initial surface pressure distribution
around- the hand-drawn starting geometry is also depicted in the same figure from which the design procedure starts.
The Initial flow field was obtained by runn;ng the analysis program for a guessed blade geometry. Fig.9 -shows the
-. fic,,. WaM.ah number oistribution and the-designed ("output") one to give-an idea about the development of

the-neow flow field in this design procedure. Axial -and pltchwlso force coefficients are computed as Cx-0.1_
2 

and
Cy -l.04 .-respectively.
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SANZ Supercrltlcal Provellor Cascade Test Case!

Sanz supercritical propeller blade is a transonic airfoil fit Ior a mid-span section of a modern propeller for
which the accurate analytical solution Is available in NASA TP-2676 (261. The geometry of this cascade was originally
obtained by a hodograph related method with boundary layer corrections. Therefore as a test case for inviscid
solutions, the blade has to be treated with open trailing edge geometry. During the design procedure nodes
corresponding to suction-and pressure side trailing edge are displaced -by tle same amount as imposed by Eqn. 16 .
Hence the trailing edge opening was kept constant. Therefore the trailing edge opening in the starting geometry must
be equal to the original opening. For this cascade design values of upstream Mach number, upstream flow angle end
spacing are : MI-0,828 , al-25.72" and S/C-1.055 respectively.

The original and the designed blade-geometries together with the-starting (initial) geometry are-shown in Fig
10. Designed-blade shape was found to be almost the same as the -original blade shape. Fig. 11 depicts starting , input
(specified), and output surface pressure distribution. The starting surface pressure distribution which was obtained
by analyzing tile starting- geometry shows a shock-like suction pressure variation. The specified pressure has a shock
free feature corresponding to original Sanz surface pressure distribution. The design code is therefore capable of
removing the possible shocks by modifying the blade shape. Starting and output Mach number surface distributions
are shown in Fig. 12. The input pressure distribution is not available in Ref. 126] , therefore it was obtained by using
the code in analysis mode. The Mach number distribution which is available in Ref. [26] was compared with the
output distribution of Fig. 12 and they are found to be consistent. Axial and pitchwiso force coefficients are
calculated as Cx- -0.152 and Cy- 0.390 respectively.

NLR 7301 Airfoil Test Case!

The NLR 7301 airfoil section is a representative aft-loaded airfoil designed especially for wing tips at high
subsonic speeds. The NLR 7301 section also provide a-rather uniform pressure distribution over the-forward 50% of
the chord at low-angles of attack and at high subsonic speeds. The ability to predict the design shape of this airfoil
has been demonstrated in this research. Ref. 1251 reports analytical and computational results about the
characteristics of this airfoil. The input airfoil shape thickness was randomly chosen to be a thin section at a--
0.194'. The calculated pressure distribution shows a weak shock formation around x/c-0.3 from the leading edge
(Fig.13). At the final pressure distribution, this is removed and the loading conforms with the designed target
pressure distribution (Fig. 14 and 15). It should be noted that due to fewer calculation nodes in the normal direction,
the upper boundary condition at the farfield was chosen to be close to-the airfoil section. This, in turn, caused the
upper surface pressure to be smaller than expected. The airfoil loading characteristics are calculated as CL- 0.524
and Co- 0.0009 at Mco - 0.721 and c, -0d194

The following table lists the convergence behavior of the code.

MESH POINTS NUMBER OF RESIDUALS

total on bladd ITERATION! rms max

HOBSON-2 78X15 56+56 9 4.07X10
"5  1.58XI0" 7

SANZ 88X17 60+60 9 7.62XI0 "9 1.45XI0
"7

NLR 102x31 59+59 9 8.47X10 "s  1.87X10I
7

CONCLUSIONS

A design method has been described for the aesign of cascade blades and airfoils with given pressure
distribution In transonic flow.

In the present- method, -steady Euler equations are discretized-on a streamline grid using finite volume-method.
Finite volume cells-are aligned with the streamlines with- non.zero-flu, terms only in the streamwise direction. The
method is suitable for specifying pressure distribution along streamline segments. Discrotized nonlinear governing
equations and boundary conditions are linearized by using Newton's method. The resulting linear equations are
reduced to a-system which mainly consists of two equations per cell. The unknowns in a solution step become the
density change and the displacement (position change) at nodes.

The advantage of present approach is that it is conceptually straight forward and can be easily haudled.
Contrary to unsteady Eulor codes, the convergence of the present method is not limited by relatively slow
propagation-of pressure waves throughout the flow-domain. All boundary conditions are physical-and easy to apply.

Application of the method to transonic-cascade and airfoil designs showed that, if surface pressure distribution
is not-arbitrary but corresponds to actual blade,-free parameters of the pressure specifying equation-tend to zero as
expecled.

The method is capable of solving sharp and blunt leading edge shapes with either sharp or open trailing edge
configurations.
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INVERSE COMPUTATION OF TRANSONIC INTERNAL FLOWS WITH APPLICATION FOR

MULTI-POINT-DESIGN OF SUPERCRITICAL COMPRESSOR BLADES
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Institut fQr Aero- und Gasdynamik now: Daimler-Benz AG
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Pfaffenwaldring 21 D-7000 Stuttgart 60
D-7000 Stuttgart 80

Summary
The method solves the inverse problem for supercritical blade-to-blade flow on
stream surfaces of revolution with variable radius and variable stream surface
thickness in a relative system. Some provisions for the treatment of the "ill-
posed" design problem in local supersonic regions are discussed. A procedure
for the design of cascades with improved off-design behaviour is described and
compared with experimental results. Comparisons with other numerical methods
and experimental results are also included.

Nomenclature

C1 ... C7  coefficients of potential equdtion
d profile thickness
h metric factor
1 chord length

La Laval number; velocity rlated to critical sonic velocity
m meridional coordinate
R radius
s arc length along streamlines
t stream surface thickness
T pitch
W velocity magnitude
z axial coordinate
6 flow angle, measured against circumferential direction
r circulation
6 flow angle, measured against inlet direction
O polar angle

angle of stream surface against axiil direction
P density

coordinate function normal to streamlines
0 stream function
0 angular velocity
0 axial velocity density ratio

Subscipts

1,2 upstream, downstream

Introduction

Blade design for turbomachines has the aspiration to obtain energy transfer as
high as possible between the fluid and the blading with as little as possible
manufacturing expenses at lowest flow losses. Manufacturing costs can only
effectively be reduced by raising the flow velocity. The reinforcement of the
velocity differences between blade suction- and pressure-side for increase of
turning and the raising of the velocity level for growing mass flow lead to
local supersonic regions on the blade suction sides (supercritical flow) which
mostly return with a shock to subsonic velocity. As the pressure rise of the
shock may cause boundary layer separation and with it increased losses, the
formation of shocks should be prevented as far as possible.
In the regions witLh plutsure ris, boundary !ayar cearation ran only be
avoided by careful blade-profiling. Since in the traraonic velocity domain
shockfree solutions can be found with only poor chances by iteratiVe contour
variation, a convenient alternative is given by the inverse design: Starting
from a prescribed shockfree velocity distribution the corresponding profile
contour is calculated numerically. The prescribed distribution of the pressure
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or velocity can be clearly influenced in the direction of a loss minimization~or boundary layer optimization. If in this way a profile adapted to the re-
ferred blade section was found, the off-design range has to be verified by an

analysis method which is connected with a loss determination based on a bound-ary layer calculation. The demand for low loss supercritical blade flow has to
be performed not only in the design point at a high upstream Mach number, but

also in an off-design range of the blading as extended as possible. But hith-
erto it is not possible to prescribe the extent of the off-design range in the
cascade design. Likewise until now it is not possible to prescribe the posi-
tion of the off-design range relatively to the design point in a desired mode,
e.g. this way, that there exists a sufficient extended region with low loss
for deviations of the incidence angle to positive and negative directions.
That means for the compressor design that the desagn point can be obtained
nearly exactly but that no exact specification can be made for the partial-
load behaviour.

For the supercritical blade cascade design the combination of a design method
and an analysis method is required. The published literature about cascade
computation methods is governed by the analysis methods. In the transonic
velocity range for higher accuracy only numerical methods come to the fore.
They are based on relaxation, e.g. /1,2/, finite element /3,4/, or time-
dependent solution processes /5,6/. Computations for comparison have shown
that there are application problems especially in the local supersonic region.

The design methods, mostly suitable for blade-to-blade calculations can be
divided into different groups:

The pure inverse methods deal with the classical problem to determine the
complete detailed geometry for a prescribed velocity distribution along the
arc length. Their advantage is given by the fact that one prescribes the
physical quantity about the course of which one has the best knowledge for
obtaining the target of low loss flow. One of the earliest formulations of the
inverse problem for plane compressible potential flow originates in Stanitz
/7/, on which the method of the author, developed for transonic and super-
critical flows /8,9/, is based. Other inverse methods using the time-dependent
solved 2D-Euler equations exist of Meauz6 /10/ and Zanetti /11/.

In the semi-inverse or hybrid methods on parts of the contour the velocity, on
other parts the geometry is prescribed, e.g. in /12/. In indirect methods like
the hodograph method /13/ no direct control occurs by aerodynamic quantities
(velocity or pressure distribution) or by the geometry. Direct methods start
from a geometry prescription, for which the respective pressure or velocity
distribution is calculated. Dependent on the result the geometry is varied in
this way that the new results approach to a desired target distribution /14/.

Fundamental -procedure

The following method, an extension of earlier developments in /9,15/, solves
the inverse problem for supercritical blade-to-blade flow on stream surfaces
of revolution with variable radius and variable stream surface thickness in a
relative system /16/. Prandtl's concept of distinct potential flow- and bound-
ary layer-calculation can be applied, since inverse design strives for low
loss flow without shocks and boundary layer separation.

In Fig.1 the solution process of the method is sketched. The sensitive
cross-section dependence of the transonic flow requires the treatment of a
flow passage between two blades from far upstream to far downstream. The
vel,-ity distributions are prescribed along the arc length of the stagnation
streamlines of the suction and pressure sides of the flow channel. Thus,
velocity gradients can be prescribed which is important for the boundary layer
development. Moreover, radius and thickness of the stream surface of
revolution are prescribed along the axial coordinate. These boundary
conditions are transformed by integration into the computation plane with
stream function cocrdinates and their normals. The computation grid is
rectangular in this plane and contour adapted in the physical plane.
Therefore, no interpolations are necessary on the boundaries. The flow field
is computed by the solution of the difference equation system applying re-
laxation combined with multi-grid. The gradients of the velocity field are
used to determine the flow angle field, and finally, by integration, the field
boundaries in the physical plane, i.e. the contour shapes, are computed.

t
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Governing equations

For steady, compressible, isentropic flow the full potential equation,
transformed into the potential-stream-function-plane is /17/:

Cl. 1n W + C
2 In W + C3" + C4 2

I q) 2 i t2 3V 11) 4 -I

C Cn W C Oln W+ 5"-- -- +o 6" '- +  C7 = 0

C = f (W, R, t, h1 ) i = l...,7 Cl)

with the motric factor

h(P) = hlu W- J sin (2)

u

As h W is valid for the flows in an absolute system, it is used as the
condition for the free integration constant hlu, so that h lu(=0) = Wu .

For flows with constant stream surface thickness and constant radius the
introduction of the logarithm in the differentials reduces the terms C5 to C7
to zero.

The type of this quasilinear partial differential equation of second order
changes according to the sign of C. It is elliptic for C1 positive (fla<1.0),
hyperbolic for C1 negative (Ma>l.01, and parabolic for C1  0 (Ma=l.0).

For the numerical solution of the potential equation (i) with finite differ-
ences the flow field is covered with a computational grid which is rectangular
in the ,v-plane. The adjustment to the different domains of dependence occurs
by type-dependent switching between the respective difference atars. The
solution of the difference equation is performed by successive line over-
relaxation. The relaxation factors were optimized dependent on the computed
local Mach number. An additional convergence acceleration has been obtained by
the application of the multi-grid-method /18/. For the non-linear difference
equation system of ISGAV suitably the "full approximation scheme" was applied.

Local grid refinement is provided for regions with steep gradients, since mesh
sizes for sufficient resolution of these gradients are not acceptable for ap-
plication in the whole flow field. The results of the coarse grid computation
are used as presetting of the fine grid. For high accuracy, a feed-back calcu-
lation can be performed which uses the results of the fine grid for recalcu-
lation in the coarse grid in an iterative way with overlapping boundaries of
both regions.

The flow field solution has to be transformed from the computation plane into
the physical plane. From thL- computed velocity field, the flow angles can be
calculated by integrating the continuity equation on normal lines and the
equation of motion on strear~ines.

a

{d& r [h Oln(PR tW) Jdo (3)

u Iu

P t tW Oln(R W4) +2 J)si I 4
hi W hI do 4)
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To avoid numerical inaccuracies in determining the derivatives on normal lines
at the boundary, equation (4) is used only to compute the flow angle of the
mean streamline. From the mean streamline to the boundary the flow angle canbe calculated by using equation (3).

Analogously the physical coordinates on streamlines can be calculated from:

o m

{R dO Cos~ sin8 (5
h do dm h d (5)

T.0 = m! 1P.

and on normal lines from:

P m

R O = P t W do dm = t W d 6

pp. (0 m I  410

Boundary conditions

In transonic flows with local supersonic regions, it is generally not possible
to predict whether a certain prescribed profile velocity distribution would
lead to a convergent solution as this represents an "ill-posed problem" and
therefore a physical solution need not exist in this case. The non-elliptical
type of the differential equation in the supersonic areas admits the flow
computation only in the domain of dependence. By completely prescribing the
boundary values along the profi2e contour, the interaction between the
elliptic subsonic differential equation and the hyperbolic type in the super-
sonic field leads to an overdetermination of the equation system. For a "bad"
prescription, the differential equation system cannot be solved, i.e. non-
convergence of the numerical syptem appears or an unsteady shock is formed in
the flow field (FigL.). In Puch cases iterative modification of the boundary
conditions is required:
If weak shocks are present, their location in the flow field - mostly easily
recognized in the shape of the sonic line - is traced back to the flow field
boundary (Fig.3). For this the local characteristic directions are plotted
throughout the local supersonic region. Following these directions, the
position of -the producing boundary values is found. They have to be modified
so that additional expansion waves are generated and remove the weak shock.

If strong oscillating shocks appear in the field, the prescription of a shock
on the boundary with consideration of the Rank.ne-lfugoniot relation is the
only alternative. Otherwise a total change of the velocity distribution with
lower maximum velocity and different distribution of the circulation over the
blade depth is needed.

The correct periodical velocity distribution on the upstream stagnation
streamline has to be found iteratively by checking the complete covering of
the upstream region with flow, i.e. the upstream suction ad pressure side
stagnation streamlines have to coincide.

Since the course of the deceleration in front of the leading edge depends on
the blade nose shape and therefore on the prescribed velocity distribution
over the blade contour, this laborious iterative process should be solved by
the program: Interchanging computation of a standard upstream flow fierd and a
transposed second field between the mean streamlines of two adjacent flow
channels leads to the final upstream velocity distribution.

The transformation of the prescribed radius and stream surface thickness along
the axis of rotation z has to be performed iteratively, since the function of
the axial coordinate z = f(p,o) is a result of the computation itself.

A further iteration occurs for the rotor calculation in the relative system.
The transformation of the prescribed velocity distribution into the
computation plane is carried out by integration of the prescribed velocity
distilbuLivn to determine the normal function i) . The suction side values can
be integrated directly, whereas the metric factor hI of the pressure side
streamline has to be determined iteratively.

1-
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Iterative adjustment of cascade parameters

A prescribed velocity distribution does not necessarily result in a profile
with desired parameters such as turning angle, pitch-chord ratio or profile
thickness.

For obtaining these target quantities the prescribed velocity distribution -
due to the non-linearity of the problem - has to be varied iteratively.

Necessary but not sufficient condition for the prescribed turning is the
correct adjustment of the circulation quantity over the blade to the value
from up- and downstream flow parameters. In the rotor case an additional
integral term results from the rotation of the flow field, thus the complete
circulation is given by

= - ,Rds - J W2ds + J Wlds (7)

D K

For sufficient fulfilment of the conditions for the validity of this equation
the arc lengths on the flow channel boundaries have to be prescribed
correctly. Moreover, the periodicity conditions have to be observed on the up-
and downstream streamlines. Therefore, since -the geometry is unknown at the
beginning, an iterative procedure is necessary. The kind of correction depends
on the monitoring of the pitch-chord ratio whxch is acting simultaneously.

After adjusting turning and pitch-chord ratio, the thickness distribution of
the computed profile is investigated. The variation of the velocity
distribution for a desired profile thickness distribution is accomplished -this
way that not only negative profile thickness can be avoided but also a maximum
thickness can be obtained in a specified region. Thus, the thickness
distribution can be adjusted successively to prescribed values in the whole
profile range.

At the beginning of the thickness iteration the existing velocity distribution
has to be varied so that after the subsequent field solution the desired
thickness will be obtained.

The modification needed on the boundary of the computation field is obtained
by transformation of the profile velocity distribution with application of
trigonometrical functions. Depending on the profile region, where the maximum
modification is necessary, different functions of transformation are applied .

For greater thickness modifications unfavourable distributions can arise. This
will be recognized in the program and be solved in this way, that the maximum
modification in the profile region will be shifted to points where such
difficulties cannot appear, i.e.-, either to the profile trailing edge or to
the point of maximum velocity (Fig.4). As the point of maximum velocity
modification on the profile has to be identical with the point of thickness
modification to calculate, a certain thickness modification in the new point
is assumed dependent on the desired value in the former point (centre of
Fig.4). Since the resulting inaccuracies cause deviations from the desired
thickness distribution, the prescribed values are obtained only after some
iterations.

If one of the considered cross-sections is placed in the supersonic region of
the profile, an additional difficulty appears by the reversing of the mass
flow density behaviour and the condition of constant circulation. In this case
the mass flow density.requires an opposing velocity modification, i.e. for
obtaining a greater profile thickness a lowering of the velocity in the super-
sonic region and a lifting in the subsonic flow. Therefore, it would be neces-
sary to widen the distribution around the maximum in order to maintain the
circulation constant. Numerically this would be an aggravation, since the nec-
essary widening should be introduced into the equation system, so that an
analytical solution would be impossible.

Furthermore, some cascade designs have shown that the in.luence of the field
distribution leads to stronger deviations from the linear one-dimensional
assumptions so that opposite thickness mouifications may arise. By widening
the supersonic part of the velocity distribution the local supersonic field
may spread to such an extent, that a reversing of the thickness dependence may
appear.



The cascade, Fig.5, yielded the following course of iteratinn for a desired
thickness of 3.5 % in the trailing edge region:

start minimum thickness 1.85 % (D/b)
i. iteration 3.72 % (D/L)
2. iteration 3.47 % (D/L)

The relative error of 0.8 % is less than the prescribed error limit of 1. In
the prescription of the error limit it is to be considered that not the
profile thickness but the channel cross-section is the result of the design.
In this example the tolerance of 1 % means an accuracy of 0.02 % for the
channel geometry. In this range the accuracy of some computers (e.g. IBM, VAX)
is not too far away.

The inverse design method computes the isentropic potential flow boundaries.
For consideration of friction effects the results have to be corrected by
boundary layer calculations. Against analysis methods the inverse method needs
no iterative procedure. The calculated boundary layer displacement thickness
can be subtracted directly from the potential flow boundaries. By this step
the metal or fabrication contour is obtained. (The thickness distribution
iteration also works with these contour values if desired.)

Cascade design for extended off-desion range

For the design of cascades with extended off-design range the following
procedure is applied (Fig.6):

Starting from experimental velocity distributions or results of analysis
methods for off-design ,conditions - e.g. positive and negative incidence
against design upstream flow direction - new velocity distributions for these
conditions are designed which may be expected to produce a more favourable
boundary layer behaviour, but retain the characteristic off-design behaviour.
For these new distributions the cascade contours are inversely designed.
Hence, for these cascades the velocity distributions for the original design
point are computed by an analysis method. Of course, they are differently
shaped. Therefore, from both distributions a new distribution is developed
with the aid of boundary layer calculatlons. This new distribution produces
the new cascade by application of the inverse method. Analysis computations
for this new cascade in the off-design have to demonstrate, whether additional
changes are necessary /19/.

Starting point for the design of a cascade for extended off-design range was
the off-design behaviour of the cascade SKG 2.2 at incidence angles of -3 and
+3 degrees (data in Fig.8). Based on the measurements for these conditions new
distributions with less critical boundary layer behaviour were developed, and
by application of an analysis method /207 the velocity distributions for the
design angle of the original cascade (A = 142 degrees) were computed.

The comparison with the design distribution of the original cascade SKG 2.2 in
Fig.? demonstrates that the off-design effect was underestimated: The design
of the negative incidence point (N) produces already a front peak on the
suction side distribution at original design point upstream flow conditions
and the design of the positive incidence point (P) a front bay in the velocity
distribution relevant to design condition. Consequently, the suction side
velocity gradients in the nose regions have to be reduced, whereas the
pressure side gradients near the nose have to be raised. Since the circulation
is reduced by these variations the suction side velocity distribution has to
be raised in the rear part of the profile.

For comparison purposes with the new design results, in Fig.8 the design and
compuf ed off-design distributions of the SKG 2.2 are given. In Fig.9 in the
centre the new design velocity distribution is shown together with the
negative incidence (left) and positive incidence distribution (right). The
velocity peaks of the suction side front at positive incidence and of the
pressure side front at negative incidence are clearly reduced, but not the
peak of the suction side centre at negative incidence.

The shape of the complete cascade SKG 3.3 and the respective flow field, given
by constant velocity lines, is shown in Fic.i0. For high resolution of the
steepqtadients in the lapdinq aedgs rpqon local arid refinements have beenintroduced (Fig.ll).

After modifications in the inverse design method by introducing the stream
surface thickness into the governing equations, for the purpose of comparison
analysis computations at the design point were made by a flux finite element
method (FFE) /20/ shown in Fig.1 Except for some diffurences in the leading
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edge region of the pressure side and in the local supersonic region there is
very good agreement.

The experimental velocity distributions (Fig.13) from the DFVLR, Cologne, /20/
show satisfactory agreement with the design distribution. The total pressure
losses (Fig.14) in the design point and in the range of t 2 degrees of
incidence have the same favourable behaviour as the cascade SKG 2.2. The
velocity modifications on the profile suction side lead to distinctly lower
total pressure losses in the range of positive incidence. The increase of the
losses in the range of negative incidence is probably to be explained by the
shifting of the maximum velocity on the suction side towards -the trailing
edge.

Cascade design on stream surfaces with increasing radius

A cascade has been designed for high subsonic flow with La1  = 0.786 and
aturning angle of 33 degrees. The mean divergence angle of the stream surface
is A = 30 degrees, and the side wall contraction with sinusoidal slope
throUgh the cascade amounts 33 percent. In Fi.15 the prescribed velocity
distribution is given by the solid line. The computed profile contour on the
bottom has been transformed to an equivalent cylindrical stream surface.

For comparison, analysis computation with a time dependent finite volume
method originating from P.W. McDonald /21/ has been performed. The result is
given by the symbols in Fig.15. Almost excellent agreement is obtained.

Conclusions

Inverse design methods receive growing interest, since in this way progress
can be achieved for low loss turbomachinery bladings, especially in the
transonic flow region.

The present extended inverse design method seems to be an effective procedure
to design highly loaded axial compressor cascades on stream surfaces of revo-
lution. It produces accurate results compared with measurements and computa-
tions from other methods. It was applied to cascade and multi-section compres-
sor blade design. Lower losses were obtained compared with conventional
blading.
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INVERSE DESIGN MIETHOD
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SKG 3.3

Fig. 10: Contour shape and velocity field of the off-design optinized cascade.

74'Z C~p~tion grid in th)- flow plane nith velocity as height coordinate.
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UNE-METIIODE INVERSE POUR LA DETERMINATION
D'AUBES DE TURBOMACHINES
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RESUME

ot article ddrrit une nidthode inverse de ddterinination de profils de grilles d'aubes do turboinachinos,
applicable en 4coulement transsonique. La rndthode ddveloppde est relative &. I'6coulexnent quasi-
tridimensionnel autour d'unc guIile d'aubes et est basce sur ]a resolution on inolle inverse de l'equation dou
potentiel scalaire assod6 A la vitese albsolue datis un rep~rc relatif lid a l'aube. La definition inathdunatique
correcte de la formulation inverse pour les grilles d'aubes enl compressible est examinde. le jirofil desire est
obtcnu apr~s une sdrie d'Wtrations rsultant de l'ajetiaient de pararii~lres autorisant la convergence du
procddd. La, rdsolut-ion nunidrique emploic la niftluodc des dl6invnts finiis. Des r~aultats asont ensuite
prdsentds. Ils conce, lent (out d'nhord lt- validations prilillnaires de Ia indtluode et. Inontrent lapovllt
qu'a celle-ci de-restituer un profil connu h partir d'i~iitialisations-grossi~res. Certains ca3 tests trait&s sont
enfiun montrds.

INTRODUCTION

Les-performances (charge airodyn amiqcue, rendement) d'un proil dans-une grille d'aubles enl 6couleinent
subsonique ou transsonique non bloqu4 sont essentiellement (leterlninees par Ia vitesse A 1'extrados et. A
l'intrados du-profil. cette dlistribution -in flue enl effet directeinent sur Ie comportemient des couches Iinites
qui se ddveloppent sur Ie profil. Ceci justifie I'tude d'une indtlode perniettant de ddlinir uto profil
-conduisant A une rdpartition de vitesse hniposde sur celui-ci. Deux aplproclics peuven, Utro adopte pour
obtenir des -profils d'aulbes qui posstdeiit. les caractdristiques requises. les i'.ithodes "directes" d'une part qui
consistent a analyser l'coulement auto ur d'un profil donuid,-puis A-en modifier Ia forme-si la vitesse sur
celui-ci W'est pas -satisfaisante; les mkluodes "inverses" d'autre part, dans lesquelles une distribution de
vitesse ou de presion est-chioisie et le profil directemcnt ddtermin6 A lpartir de cette distribution. Alors (Jilt
Ia preniere approehie ndcessite en general tine certaine ixpdrience do l'utilisateur ea condluit & un grand
nombre d'iterations oul ndcessite- le cauplage avec une ,ndthode il'optimisatioii nurndrique, Ia seconde
apparait iniieux adaptde car elle lperlllet d'utiliscr directenient Ia distribution (IC vitesse Wdale do poinlt d
vue de Ia-couclie limite. Naturelleunent le prolil obteun le satisfait pas ndcessairemnent les contraintes
gdomdtriques ou do structure qjui-pourraietni par ailleurs 4tre-iniposcs. Nous nous p)0Jopoison de presenter
ici une telle indtluode inverse appliqude A Ia determiination do prolils d'aubes lde turbonachines (10115
l'approxiination dl'6coulement potentiel (luasi-tridilnensiannel (oil app~roximnation 2,5D)).

Pour ulie revue coinpl~te des deux classes do indtlodes, nous renvoyons A Sloof 171; no0(1 teonls
cepetidant a inentionner ici-certains auteurs qui ant ddveloppd des, niftihodes qui noub ant appuite des Wdes
importantes. Dans [8], Volpe et Mclnik alit iiisist6 sur I'ilnportance de contraintes, iises enl didencc p~ar
Liglithill 15), et ant construit uli algoritlone perinettailt do ddterininer des prolils iso]6v sat isfaisant ces
contraintes. Cependant. leurs cluaix n0 peuveit, Wte appliques I~u Ill (icterliiatioll (I pi olils non isoles
d'aubc-, et il a Wt ndcvssairp do trouver lsbnlarnve peillet1alt deC sm-isfaire cs canlraintes. D)ans
121, Cedar et. Stow alit projpose tine inelthode dI'alalyse et, (I dderlininltion dle-grilltr, d'auIbe- Iasce sur une
discrdtisation do type 6ldinents finis. celte-inithode perinet (Iolbtellir un profil par i nod ificat oils succesves
en utilisant un mnodele de tranlspiration, cepenlant, elkle garnnli ii J Oxistence lli proil, Ii Ia.
convergence du procu-ssus (IC luadilkcation.

crt-ains p~rolenules diconiques sont, Ii~s i I'Cxitellce de solutions an probl~nie inverse et serant taut.
a aord evoques. Ei pai ticulivr, 1101.1 prec~sits piirailn('tes qiii (l(vent CCII tic( taassc llres 01111 (IC

garalti r l'existence (['tine solu Iion at Ia convergence do I 'a Igaiit Ii o de (Iterliilat ion de0 formne. lx8
equatians rdgissalt Ie illacele pot ('Itiel qus-rdioaonlson t (iisuit e raiIppele. Olt-, perinetteatde
preiidre en-callpte las elrvts de l'dpaisscur elt de Ia conic6 tdedo I nappe do erurat, OiIsi (tIne cCLIx do In
rotation de la roue, pour u11 ecol eit do Iluide Iiarfai t irrotat ionllel. P0111' 1111V li~t ribion(~ do v it.es-se
(loflhlc, halls wnltralls collineiw~ r4~ol(Ire ce.x qa(tioli; de 11011i~re A poivoir il0(lliel un Inofil



12-2

quelconque et- ell 01)1ellir kilniiovenu autour d uquel I 'kouls-iiieni1 voire.simiil At Ia (list rjl)utiOli -1on1II&e
L'algori Liiinc ini i ique i tiliso nne d iscrdt isation par dl~iietils flis (jul meclt i deux elia nips d 'licolnucs: le
potentielti(aois le doinaine e. Ic d~placeineiit normal de la courbe representant, le profit. Notts ntiontrons
enfin certains exemples qui ont 46e trait~s aIfm de tester la ni~ttode; en particutwir nous inontrons un cas do
non-unicit qui a &6 obtenu quand Ic nontbre de paraiinircs Iaiss63 libres ii'est. pas coirect. Quand cettc
dillicuttil est correctelnent, prise oil comnltc, la indtlode jierinel, A liartir tI'iifialiations quelconques, (t'uii

part de retrouver un piofit connist et d'aut~re part do d~terniincr le profit autour (Ilquel t'&oulcincnt
correspond i une distribution de vitesse quelconquc.

EXISTENCE D'UNE SOLUTION POUR LE PROBLEME IN VERSE

Les contraintes do LightiI
Depuis plusicurs dizaines d'anmnes, le iirobit-me inverse enl t.tieoric dles profits a 6t tudie' et, de

noinbreuses nidtlodes de construction (IC profits oia ai 4 r ormiils p~oui (des &oiitemiicts inconijressibles oil
coinpressibles, sntbsoniqnes on transsoniques, avec ott sans clioc. 11 a etI,1 vii particutier d~nioiitr6 par
Ligltill [I] que pour un sdcoulnti incompressible anton r d 'un p~rofit kol,, ha sut ion (It n 1otleine inverse
ni'existe pas, a mons, que Ii ripam ti tioli de vitesse presecrit ItI'. tie vvrilie ((iltitt 'opitrii s iiit~grales.
Ccs relations penvent, s'~crire:

f log I- d .=O (I)

f log i-I os-w dw =0 (2)

fP7 f tog I - -smn-w dw =0 (3)

oil W__, est-ta vitesse A I'inimn, eL-w eat, Pangle polairc dans le plan dMini par transformation e-mforme du
pirofit enl cercle. La Ipremnire contrainte cat Ito coni~quence-de-ta conservation de la mnasse on, de inaniere
6jnivatente, ette exprime Intoe ncessaire conlpatibiti. cntrc ]a vitesse A t'infiuii 0. ta vitesse- prcacrit, stir te
profit. Les-deux deri6res contraintes soot. tic'es A la ferincttire dit-profit,; si cettes-ci ne sont-pas satisfaites,
un-profit jitut, Rre obtenu , mais it ne scra- pas-n6cessairetnent, ferim6.

Pins tard, Woods 1121 a g~jiralis6 tes r~suttats dc 'Ligittitt anl Jroli[6ine inverse mixte oq lIa
diatribution-de vitesse est, prescrite-sur une-partie du- profil, Ia forinc ftant. fig~c Surl (ile autro. Certailles
autres g~?i'ralisatiolis ot &6 oltetc pour t'couteiieiit inlcomp~ressilte autour (to gulles d'auhcs
(Rosenblat et, Woods 10)) on pour certaines apiproximnations de gaz Colnjressibles- approximation do
Karnian-lsieui (Woods Jill) on toi die tiajityguine (Karadjinas 1,11). Copcndant, anenlie relation extilicite
n'est, actizellenient connue pour tcs: 6couteients transsoniques (te gaz liarraits, et, auctine 6tude ne aemlte
avoir 46 eiigage pour Its ecouemnts (jtasi-tridinelni els (lii font I'objet, de cot article. It eat
n~anmoins raisonuable de-pcnser que ces relations existenit, dans lecas g~n~al piar passage a Ia Iiinite d'un
6coutemnenticip stietreiet iiomibre de Macti -t.end vers-z~ro. Ceci so tiaduit pal' Ic fait que, poor
title repartition arbitraireinent donn&, it n'existe pas de pirofit sur e cfel-la vitessi'-aiigentielle soit. 6gate A
la iipartitIion donii~e. Alfin dI'assul er 1'exist ence d'uli- tel-profit. qleq aj usle'ien ts (Ioive'it, iltr autol-is&
dans ]a donn~c dIe ht vitmese stir Ie pijofil pour que trois cotitiantes 6oicit, satisraites. Ccci pocut ktre
accmpti eni laissait i s jiarailies tibr-es (tails ta1 reial titioi tliiiiec.

R~cerynien t, VJolpie a Melnik 18, t1)01 ow. proliosd quelques~f cttoix poib.iles -(I parniatres. Its ont, chlsi
comnne firemnier pam ;ietre Ia vitesac ItI'_, afiti de salistairc I 1'e-qtivaleiit. ell ncolilpi essible dt- Ia plei tn er
con I mint c de LightlI. Ains'i, en s'iinposaw illne (lis~rt tlmion de vitesse d(femt v'ii foiictioii-d'line abseisse
reIuite

variant-de (0 i I stir le profit, ifs oilt. miniIIpoiit iI I is lnilld 1)ut.1 is M I fWp i d!41sl!Iir li~.n- prefil, e .
(lont la vit esse-6igale ',I vi te5se (tiii S fact cur iii tiliplicaor li' ns fl. 11t ilisan t. cetllO ietiode initiate,
its ontI obtelmi eiiifiriquJliili ccii ailies fotil ions% (1e miodificat ion pi, aom tes h I'l distribut ion inlitiate,
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perinettent do contr6ler N'paissen r de l'oiivertire (fit bord de' fuite. Ainsi leur iwnklode lperiet. d 'olteiiir 'n
profit rerm6 dont ]a r~ponse III, (viLe tngentielle) est voisine de celle inposde IV,,~, et de Ia forme:

0o HID+ a , q I + it q2 ()

oil ao (respectivenient a, et 02) cot voisin de I (resp. voisins de 0) et q1, q2 sont les fonictions do
modification.

Renforeement des contraintes -pour les grilles d'aubes
Le cao du calcul inverse est sensiblenient diffrent pour les grilles d'aubes. Tout d'abord, il-est apparu

que pour les utilisations. futures do la mdtliode, la vitesse A I'infini IV., ne peut Rtre modifliee, et :eci
interdit I'utilisation dc cette quantittd comine 'in param~tre ajustable. D'aitre part, le constructeur n'est
pas intdress4 par I'obtention d'un profit A partir d'unc distribution donndc sur tout le profil- A laide d'une
abscisse rdduite unique. cette dunnife fixe (dans le cao purcinint bidimensionnel) leo longucurs relatives de
l'extrados et do l'intrados-du profit et donc la positionI du point d'arr~t. Au contraire, Ia rdpartition de
vitesoc cot plus avantageusement tiflisable si celle-ci est, lprecrite indidperdaininent stir 1'cxtrados et
l'intrados du profit, et donc donntde par deux ronctions ddfiniL-, iA Iaide do deux abscisses curvilignes
reduites, i,,,, t -%. La position relative du point d'arrU stur Ic proftl peut aloro 6tre laisode libre, et
constituer le premier degr6 de liberttd-ndcessaire ii satisraire 'ine contrainte.

11 cot d'autre-part possible de considdrer Ic- pas inter-aube comine Ic second parain~trc iidceooaire. En
effet, dans l'tude mcnde par Lighthill, !e-profil-rccherchd est-isol, cc qui revient a fixer le pao-(h .-*-oo).
De rnine, dans leo travaux de Woods, le pas relatif (pas rapport6 A hIn corde du profit) cot fixi5. 11 cot
d'autre part apparu que pour Ic constructeur, it est ndcessairc dans certains cao de-fixer le pas en laisoant-la
corde libre en -particulier* pour obtenir 'in nonhlre entier d'aubes par roue. Ce parani~tre cot done choisi
pour safisfaire-une-deuxi~nie contrainte.

'rout comme Volpe et Melnik, le ( roisi~ine- param~tre lnissd libre est l'ouverture angulaire au, bord- de
fuite C.

LE MODELE POTENTIEL QUASI-TRIDIMENSIONNEL

Les-dquations du rnod~le
L'dtude aerodynamiquc d~n roue do turboznacliine axiale petit Utre abordde avec 'inc certaine

approximation en decoinposant l'coulemcnt tridiiensionnel en:
* 'in dcoulement moyen dont la cairactdristiquc llrincipale cot d'adincttre des surfaces do courant de

rdvolution autour-d'un axe Oz,
* 'in dcouleinent, do grille d'a'ibcs ouir chaeuiie des surfaces de revolution constituant. 'inc appe de

courant.
Nous oupposons que-le rdsultat-du calcul-de l'coulement inoyen cot connu et en particulier que Ia forme

des nappes do courant cot, donnde par une- foniction r(z). On dient, compte de-la conicitiS de ]a -veinie dans
I'dcriture de I'equation (le-continuite en introdluisant H'paisseur b(z) entre deux nappes de courant. Le
caleul se fait. alors our 'inc nappe en prenant coinme variab~les inddpendantes ti et, 0-o6l ti cot labscisse
curviligne do Ia indridienne et, 0 cot hi'ngle repn~rant, one te'le indidienne (fig.l). Ces-hypotIises-constituent
l'approxiniation "2fl"

Les hiypoti ses-a~rodvyjnniqlues-s.iit celles d'in coti lei iient- irrotatin nel (tC fluide-pai fait.

rot-V 0()

oi6 V cot, Ia vitesse absoliue du Iluide, En fenant, coinpte dIe la rotation w-de hI-roue, cette vit(tsse peut etre
ddcompos~te eni uuie-vitesse relative W dans tini rep~re Wi A ['.tube et ume vites d'encraineinent. Wk X r:

V -W + w-k X r (7-)

oil-k est Ie vecteur 'uniilaire de l'axv 0: et r (-,. t- vecteiir radial-repd(rant. Ie point, colisid64r par rapiport
Pac ozv (M1 i-st-I~osible (it- d~diiire I exisi enee d uui foii oilnte~il~tleqo

V =grad ~$(8)
et (lone.
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oll IV, et IV, sont Ics pjejctionIs (IC Wi sur los axes cIffinis Suir la, lappe dto courant., I~'&quatioii do
continuittd pour lieo-ulemoiiL snppos4 stationnaire dans Ic rc'l)rc relatir:.

div (pbr, W ) 0 (10)

s'ecrit alors:

r DO0 rOO in I
La xnasse-volumiqu" sobtieni A I'aide do 1Pdquation do B~ernoulli dans le rep~rc relatif:

I p + (f - w, r) = Constaic (Jr)
q-I p 2

oiA Ia pression p est, doniinc par:

P1

Dans la sutie, los indices I et, 2 feront rdfirencc aux quantitds A lPaniont-et, A I'avAl La masse volinique
apparait, done comnni tine fonction du potentiel:

2

P = . I+ --J ( IV - IV(14)
~1 I 2

avoc:

(911 rD09

Le-systame d'&pjations (11, 14), compltM par dos conditions aux liunites, pet ULre resolu nulnriquemlnt
par les methodes classiquos, notaimnt par la mdtliode des cIdinents finis qtii sera-ddtaillkc plus loin., Cea
6qtiations sont valables-dans le as otO H'couleint (iti-fltli(e est transsoniquc sans clioc oti avoc des chocs
d'intensitd faible, c'est, A dire pour des-noinbres do Maclh no depassaiat pas 1,, avant~ Ic choc.

Los conditions appliqtides aux liites; du doinaine de calcul et plus particuireeini Stir le profit
ddterminent-lc mode do r~solutioi: ealcul dirct, oti calctil inverse.

Conditions aux: lirnites: en dehiors-du profit
Supposons Iout, d'albord quo -Ic donwici (Ic calcul-soit coiistitu (Pull canal s'appiyant, Suir detix-atbos

consecutivcs (fig.2a). CoLtc topologic qera Una&t liar Ia lettre I1 el r~fi'eiicc ain nillage (jai sera, ati
construit. Une atre topologie (C') scra aussi coiisidirtdc (lig.2b); daiis celle-ci, Ic doitnine entnowr I'aibe et,
est Iiii per-doux-liguies sticcessivos tracees aui milieu dWin) canal intor-aubo.
Nous ddsigiions par ht le-pas angiilaire iiuter-atibe-(i l'ainontj aL nous ni'excluons p 1. I pos.5ibititd d'avoir
un profit "otivert." all bord de ftiitc: reltii-ei est alors proloiig6 par til ;)soudo-sillage, saii partance, do

ince 6paisscnr aniguilaire 4 (fie I 'obstruct ion diu bord de u i to. 'ioutefois danq l Ic as-de I 'tude qtasi-
tritlimensioniiille, il Wes'ot pas 1o=04vt dc tloiiiur d 'ii.terpr~t~iou phiysiqueio an ma oti I 'obstruction
pr~senterai; tin dicalage onl in,. Nous linuiteroiis donc Ntide auix-seiils maS oii les bords det fuiile intrados ct,
extrados ont in ~nje absrisse "'BF LC Canal int tu-auilet a done tine largeur h il ainc', aLIh -e cii avad.

La r6%olutioii de (1I, 141) i~os aloes In d011116 e etaoilles qtiallit,& ccliiives.' A l'ecoulcilnt ell
amonL et, enl aval. Le dioix fait par Ie couistrurteu cowiist', on In donniie dac coinditioiis gdiitAra trimccs
aniont, rioinbre de Maclh All el. di' omlioli t- I 'coiulvuieii (1o, ainsi qfil Ia, direct ion de Ioiileiiit. a l'aval

02.Dans Iocas oilitI y , iotalion- des .Ri bes, out re In va Icur w to o tu-vitte. e do lot ationl, tine aut re quan lit
(tciniratutre on plosiou) dbit iv (louiec aliiu de' fixer Ie parani-tlc tor,1 ll. qu (ialit ike (1lo111e.- a
Paiot peiieitlent. de evimcilte e'~ reut i es A I'oval (vi iss' If',, el Ilinas,' voln injiquIc p(,), 10M.i il l l a
coliservat ion (tsn (lt-(jii pei sceerire:

A~~~~~~~ it -1 ; c~~ r'1 ~U- ,rP, It' I-

-------------------- ~ ~ 2-
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* ~~~~~Alors, stir In rroitlihet Al ti. Of it doii iiil on i.n (il pl'tit ;ppli(titi linte Conition d (I lebi t
(condition de Neumnann):

p P 6 1 till cosa, stir AB3(7a
On

p2 &-p 62 1I' 2 COSa 2  stir CI(7b

Bit cc qui concerne In topologie en C (fig.2b), ces conditions sont nppliqui~es stir les c6t&s AB d'une part, et
CD U EF d'autre part.

La piriodicMt des aubes rournit tin autre-typc de condition lux litnites du domaine; en elltct, si la
vitesse est ]a m~rne entre dcux points qucicoiiqucs s6par6s d'un pas angulaire h , ii est Clair que Ia difrence
de potentiel en ces deux points est unc tonstantt. Eni effet, si on a-

W1,, (it, Ok) IV. (tit, 0) et I4/j (in, O+h) = till (tin, 0) (18)

on a-tncessaircnient:

S(tit, O-ih) =#(titt, 0) + 0 (19)

En partictilier pour les p~arties AC et 131) d'une part, et BC et F11 d'autre part, une condition de prio(IiCiti

#DD = OAC4 + Cl (20.a)

O #1 06 + C2 (20.b)

oti Ics constantes C, et C, sont-calctihles At 1anont et A l'aval oil I'ecoulcmnt. est suppos6 tinifortne:

C, = h rl ( W, sin cr, + w r, (21.a)

C2 =-(It-c)-r2 (112 sin 02 + w r2 ) (21.b)

Danele cas de Ia topologie , les e-onditionisd(e-p~riodliciti Wcrivent-

OBF = 0,4 + C1 (22.a)

OREB = 'OOD + C3 (22.b)
avecc

C3= Ct -02 (23)

PRINCIPE DE-LA-DETERMINATION-INVERSE

Condlitions sur-lc profit
Les conditions nienquantes; stir le profil (c~ts CE et DF dans In topologic II ci. C1I dans Ia topologie C)

ddpendent du ,problaine traitd. Pouir tin calcul direct, des conditions de paroi-de type Neumann-(vitesse
relative normale au prolil-nulle)-sont appliqu~s. II ost-alors h~cessairc de fixer le-poteittie) eni tu-in Olt-du
domaine-afin-d'asstirer l'tiiicite~de-celui-ci.

Eii<node inverse, 11 le conitition (IC type IDiriclIet t, inposde stir le pi olil: .stpposoiis tpie Ion se donnie
stir le-profil-une-r(~partiicn de vilesse relative li'O- on pent aiors (lt'inir ie oiirtioiiOil par initegration (Ie
W,' Ie-Iong~dti prolil-domit' par tine rei~e n o i 0 n).Ccli t foactin-doll. vti'it'r.

(-0, + (7.-Wo 8) O (24)

o6~ s rcpr~sinte I'absci~st eioviligiit Itv long tinipolil:
ds=din + rt'1 (2-5)

La loedion 0, Ietel. donie itre tilenuiiit par-hil grationi let:
d~60  2 t

1

- (20;)
dA
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La r~solution de I 'quation dui pli.coIit'! avec prescription de 0 stir Ie prolil eappelt eso i U-ht loll iiveme~ eI- -

est A la base de la iii~tlodl dlc (ltieriittimi de iprofil p)roposte dans cet article.

Modification du profil
La- determi nation inverse consiste i tronver un profil qui .satisfait A ]a fois:

a) Vitesse Norm ale =0

sur le profil. La solutioni du probkMie direct (condition do Neumann stir le profil) satisfait a) inais pas b).
La solution d'un probkine inverse (condition de IDiriclilet istic-dc l'iitt~gratioit d'unc donn~e IV,) satisfait
-b) mais tine vitesse normn au profil noni iulle cst obtenuc si le profil li'est pafs celui reclierclid. Cetto
vitesse normale rdsiduelle IV,, pout. alors Utre utilis~e pour modifier le profil; l'quatioit r~gissant cette
molification-peut Wte tl&Jnite dun-niod&l de transpiration dans lequci on cortsid(.ic tine injection fictive de
fluide A travers la surface du profil associ~e i la vitesse normiale et de debit pbW.. Le nouveau profil
recherchd doit constituer alors uiie surface do cotirant. Le (dplaceincnt~ normial-A la paroi i cffcctuer pour
passer d'un profil 6 I'attrc pent. Utr olt'nti en crivaiit la conservation do la masse entre tetix turfaces
(figure 3),

pb W. da -=pbW 0 IY 1,+,, p - 16 0  I (27)

d'o H'quatiolL~pour- :
d

- 'bw 1-pblV (28)

Princip6 de la mdthiode
La mdthode inverse consiste done cii une-succession d'iteratioiis coinportant lea trois 4tapes suivantes:

1) calcul-de-la conditioii-de-Dirichleltpar iit~gration-de (20);
2)-resolution du probl~mne inverse avec conulition. do Diriclilet 'itr le profil;
3) modification du prolil-par r~soltition de (28).

Lea 4tapes -1 et 3 sara des int6grations unidiicnsionnelles. L'6tape 2-est la rtisolution d'une dquation
atix ddrivees jpartielles -bidinicnsioniielles, non lint~aire, du secoiid ordre que Pon clioisit de r~soudrc enI
utilisant u-ne metltode derivtie do celle mise au point pour lea 6conlcients dans lea tuy~res-ct autour de
profils-isol~s (1] et ddcrite plns loin. ~eniarquorts d'unc part que cette mtlode determnine lea valeurs dlu
potentiel-aux noencls d'nn inaillage et doi la valeur dc-la vitesse et, de la-nasse volinique an-barycentre
des mailles; la d~riv~e curviligne dans le menibre do gticlie daiis-(28) ne peut-done Utre ddfinie (jue (lais-tin
sens faible. D'autre part, la vitmse normnale est dillicilement dvalu6c i partir do valcurs du potentiel aux
noends inais pent, elle aussi, U~re tdfinie dans im sons railble.' Cos reniairques inetteit, en ividerice Ia
n~cessitd-d'introduire une formulation corrodte (Io (28)-conipatible avec Ia-miitliote uitilisc potir-calculer le.
potentiel.

RESOLUTION -NUMERIQUE DUTROBLEME INVERSE

Formiulation- variationncllc continue du- probl~me inverse
ba indthode inverse d~crit c-in trodnit. ?i- clatje itr ondetix chimp ilincmms k!dtlii':I potefitiel -0 d~fii

dans le domairie et, stir Ie profil, ;ti-pie It depbtceiiieit normal f tfiiisur lczprofl i cltaqttemodifica lion.
Une m~thode d'-Mmnerit, finis a ttW cltoisic poinr Ia r65olutioti ituiique des-6(juti is dtu miodlle; cclle-ci
repose sur une-forilation variatiointlIle qtli tsl -obteiitic pat tmltiplication dt> (quatioits-(l 1, 26, 28) par
des-fonctionis teat j (admiiissible) et (l~liics respectivetelit, 4als Q) cl. stir le prolil. Par "adtissible" lions
sigriifions que lea fonctions teat 0' sat ifn Ia conidi Iionl det pt~tioticiWt. Apr~Z- ilit grattioni par Ia'rties, on
obtieiit. une formulation qii-couple lvea etix chiamp,; diuico'''ha

'Jrouver ) tlfitti laits Q el dit'liiti smtr-le prolil 16%' qte

f~ ~ pb) I) ," r i"(ib l~
all) ait ro r09 rdnd

P611,2 (18i (29.1))
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p~our Lout #adl i.Aib lii G-ini dans flet, ddlini su r it- prolil.

La formulation inixte (29) irscinte plusicurs attraits. 'r*out d'ahord, dile ebt sym~trique par rapport
aux deux couples do champs (# c t (ji, ) (qadI as ouiu s U))S~ oitnoco qui ost

satisfaisant. matvbdinatiquemnent: on cflet les thn~oraines d'existence, dl'unicit.6 et de convergence de solutions
pour de tels prolteies inixtes-no Ieuvola -tre ttablis quo pour des systies syitiriques. D'autre-part,
c'est cette-formnulation qui-permiettra, lineI fois (liscritiste, d'intigrcr l'quation (ie niodification-de inani~re
consistante avec la uidtiode des 4I1mnenuts utilisie pour catouler le potentiel.

Les formulations variationnetlos correspondant A ciaciinc des trois etapes du calcul inverse sont, done:
* Intdgration-do Itz vitesse 8ur Ic profit: on r~sout (291)) cc qui pernict, de calculer 0, stir le piofil:

Trouver 00 dtifini sur le profit tel que:

j~ jib WV0 (d 0 -wr 2d 0) =f p bW I, ds4

pour tout (Iclini sur-to profit. (30)

Cette formulation variationnetto o.t oni fait toquivateiito A la forintile W'itcgration (261).
e- C'alcul du polenliel avet: condition de Dirilel stir le 1'rojil: onl so limite druis (29.a)-nux fomictions tests
nutte sur to-profit:

Trouver 0 dUfini dans- ft et (fe 0o sur lo profit et

fpb I---+ (-- wr)-r di J 9V
n Din 011 r8O rOO di O Vd

Modficton rjt: 0&na on dins (,out lo doinaino, onl r~ou, -(20.a) en so tiitnt aux

Trouver ddliui sur to proi tot que:

Od pliI---pt + - wr)-Ir wd
P #d( pb ' R=p 011 Di11 rDo rDO

pour tout tP d6fini suric Jprofil. (32)'

be second inombro do (32) constitue uite repr~sentation-ftitbte du flux normal-pblY.a Atravers to profil.

-Discirdtisation par 4tdments fin is
La-premiere dtape do Ia (liscrtisation consiste Ai coustruire dtaiis lu donmainos consid&65 (topotogioll ou

C) un nillage. Pour-les calcuts, ii est-tutile-do tprofiLer des simnptlications qu'apporte une structure "ij" do
co niailtage: construction facile du miage, jurogramnatioi. et vectorisation aisl~cs. Onl ctioisiL donc unle
discr~tisation utitisant, des 616mments linis quadritattraux Q,. line contrainte imnposte amx inaittages est,
dict~e par los-conditionis-aux itnitos (IC type I)6riodi(Iuv: armn do pouvoir racileiient ILs prescriro, oil impose
quo los noouds-situis sur-los tigimos 3t)-ct III (In doinnine 1(topotogieci enI1) se (teduisent liar translation d'ui
pas-des-noeuds-sur AC ot EG. En cc qfil concerne-ta topotogic cii C,o suppose (full en est do mminmc pour
I& tigne do inailtargc BF par rapport, A AC. ainsi que ItR, par rapport AOl) (translaf ion do c). lii ecnptc
de cluacun-dos types ti inailtagoqites L (t' l o Sil&l de rolnstli rt n . itont r stir ta figure '1;its permnottent Ldo
disposer-d'une Inirtition-d di(oimiaine ft:

a , l (33)

ot) les 0, di'nowwt los< 61dinmcus dui iiiil lage. Onl dtilii tu. d abord tlt vplace tic (lilnii Iine V'
ospare ddprxnifin dsfn lustIfti~tios lii piar:

V h h- nda(Iiqibsle e onf011ilitto .. IpJj, E Q2 ,) (34l)
oQoT tensmnt ( losoynoumo; biiiiu-:ires suir-I2

line -base do -11 es. cons(it'luio -(feC foiitious O,, V.1t.1it I all uoend (ij~) dui mil lagi' et. 0 en tou; les auitres
et, qui respectent 1(-.q contitiowcr de pt'i iodirit6.
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Uni- ospace dI'approximIation poinr les ruietiois (It' Iniodilica.ini doji, num.oi Ui clhoini. ltenurquons tout-
d'abord que cet-cspace pent Dicturm des fonctions discutitin. l'ittgrale-du inviiikre de gauchec de (32) est

alors d14finie au sens des distributions et leut s'cxJrinier on terine de saut:-

fp~ tPid(pbIV0 C) =pb1V0C 1' - pbW~ liT (3

o O est-une fonction de base de VA valant I stir on Iloetid idu 1)1001, et. + et - d~signent les valeurs de
quantit~s A droite ct-A gauche de cc noeud sur le p rofit.-
Confornit~ment A co qol ost d'habitudc choisi pour ce-genreodo problorne inixte ain d'assurer l'uniciW-de la

solution, ii est raisonnabic de lrcndre l'ospace d'approxinntion (dos fonctions dans un espace de
j)olyfloflls de degr6 mnoindro que celui des fonctions 0t. leslpactl oloisi est. donc:

QA h = A / 5' Jr, constant-sur P,~ (37)

al r, d~signe on Otlcint sor-le proft:

1,=0 n, Profit (38)

La. forimulation -dIiscrete du prole'i viriat ionnel (213) s'olntiei,. un reiiplacnt la, functis- coltiiOes
par leurs approximations. Ms bra,-Ia r~solution de (30) est iliildiate, e110 corresonod A l'intigration de la
vitesse W,0 don~e et perinot d'obtenir les-valcurs do potentiel aux nooiids situ~s sur Ie profil par:

+1= Oi+ lvl+ A~l+A + ( +% 2 A (39)

oui I'indice i+ d~signe-Ia valour des quantit6s corresllondalites etitro los nocolls i et i+1. Confornidinent
aux clioix imposes pou lexistence d'une solution de ]a mdtliodc inverse, cette iitegration est effectude
s6pardinent sur l'extrados et Fintrados du-proiil A paifir du-poiiit (l'rrct om5-le toteittiol-peut Utre choisi
6gal A- 0. Ceci permet do calculer Ia difference dc potentiol 60 in o rd do fuito entre l'intrados et
l'extrados, puis la valour do pas inter-aube eL dles conditions .1 l'aval: en efl'ot, cos quantit& doivent
satisfaire:
@ I'.quation de circulation:

A= r2 (h -C) '11si a, + wr2 ) r, Ih( 41I', sin -a, + wr, )(40)
e l'.quation de conservation du dMRi:

P, b1, r, h IV, Cos 0 1 = P2 b2-r2 (h -c) W2 COS a2  (41)

avec

p2 = p, (i+ 1 '( r- (42)

Cos-trois l6quatiolis sont-rosolucs sitniitandnont dIe inaliore it~rati,6e et Jpvrnmttenlt de-cliulel It P2ot IV2.
Le Jprobl~tie variationnol (3]) conduit 5 Ia fortulatiun- faible diiIe (PuniI Irulilinu de Dirichlet. En

prenant-successivornnt coinme ronctions tests tootos los fonctions-de 1)nses, de VA hiiilles sur le profit, on
obtient on syst~ine d'dquations non-hineaires-de In formne:

A ( (P) (-=1B (43)

oia (1 d~note-Ie vecteur fornid des- vnlviirs do 0 u no Iulds (lo ijiillngv et- oi A (-,, u111 iniftricc'jui dUpend
do hD do fait dc-la dtiidance do fl-eol . 1La nocji-linfit t do CI' .yste ot. trnitee par on aigoritlino mixte
comnli nan I. on -algoril 11Ino do- point. ixe halls Ic.% rq'gions Siiperiui I in algork tin ivl dIe NtIS ton Ilans-les
regions- subsoniques. i)autre p~art,, il ii d'assurl'r l'unicit -Il'u111 sol utioni pliybique. -mn v iseositd artificielle
est introdoito. dans lea reginis siit)'Houiiqios, panr Ie lbiars (Fuini dleeat iintlid &-In-miiasse A ohi uique effectud
conforl~netL aux resolats satifaisants olbteIIue p011 lo., proft, 6~ol&s Ill. llkC n,6--tv a coilsillorer one
coJonniison (de Ia iflasso volunii e din' 11:616 dlnen t vu (1:1'1 4 1'e-iiieit i 1111)1

=~ pi - tvi ( Pi - Pi-1 ) (+I)

Oi5v st une fonction (lI-nionbre-dII Machi local-.

0.3-AI,, +0. A11'
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Les- 3yst~mes- Iiniircus obIACIus ?i In suite dc cette iaiiarisatioa sont rdsolus par tin algorid~iiie (le-gradient
conjugut! avec prdconditjonnenent. incoinplet de Olioleski 111.

Finalement, ]a resolution de (32)- pedt Ure effectu6e ena coiasid~rant Ics fonictions- O de la base de Vh
6gales A 1 au noeud i du profil et 0 A tous les autres. Le d~placcment n'6tant pas n~cessaireinent-continu,
les int~grales daiis-(32) sont prises an sells des distributions et conduisent au saut de In, quantit6 pbW0 .

pbWY -bW 7 pblvo V= 61"1-(46)

oti ]a quantMt all second-meinbrc repr~sente le-flux de masse a travers le noeud i qui-est calculd par:

p&W. ~f A b j- +- wr)-Jr dill d 0 (47)
a in 011 rOO rOO

Le ddplaceanent nornial de chaque facette est done integr6 A Ipartir du-point d'arrUt vers le bord de fuite.
Une mayenne en chaquc noeud est ensuite cfrcctude pour obtenir le nouveaut profil. D'autre part, afin
d'6viter des oscillations et d'accc1~rcr-la convergence des profils, un coefficient (e sous-relaxation (8 =0.5) a
6 introduit dans l'quation-de modificationi, ainsi-(46) est reinplacic par:

pb I+- pb III 17 = 6 pbW IV (18

RESULTATS NUMERIQUES

Dans cette-partie nous montrons et cominentons les re'ultats que la mdthode-a perinis d'obtenir. Ils
concernent les premiers essais qul ont Wit faits arin de va~rifier la possibilitti qu'a la natthode de retrouver des
profils connus A partir d'initialisations arbitraires-dans lecas purement bidiniensionnel (w'=0,r=b=1), nous
comparons ensuite les rtiultats obtenus en ut -ilisant les deux types de inaillage. Un exeinple quasi-
tridliniensionnel a caract~re, plus industriel est enlin Iprtsentt.

Grille-Hobson
Arm de- tester Ia inttlode inverse, ii est tout d'abord ipparu iaateressant de vtirificr si celle-ci 6tait

capable de retrouyer tin profil connu A partir (Iiiiitialisatioiis relativeinent tiloigiaiecs de Ia solution. Le
profil-choisi est le profil Hobson (fig.5a) 131, dont-Ia distribution (IC vitesse exacte est iontrtie sur lt figure
5b. Les grandeurs caracttiristiqucs sont Ics suivantes:

M, 0.575
* a1, = 40.805 rod

or, = -0,805 rad
It -_ 0.5259

Diffarentes initialisations (IC plus en p~lus lonitaines du profil I lobson reclierciad ont. ditt essayties, enl
*particulier:

i-une initialisation-symittriclue constitu&i d'un autre profil dIc type Ilobson plus tipais (fig.6a),
* une initialisation non-synittrique et fermnie-constitutic du iofil reclacrcld ayant. subi tine-rotatioji de 5
degr6:s(fig.6b),
* un profil ouvert constituti de-I' extrados du profil-rclerchid yant subi-uiie rotation (IC 5 dcg:js, ct' d'un
intrados tel que y' = 0 : cc-profil est. ouvert ati lbnrd (IC fuite (fig.6c).
Pour ces trois initialisations, Ie prolili at.6t rctrouvti rcspcctivenaent. apr~s-5, 8 ot 12 miodificatiotns. Pour 10
modifications d'un-prall ddini par- 121-points dans ti am aillage de-1936 iaoeuds, Iclesaeps cpi nticessaire est
de 8 s.-sur CRAY XMP-18.

Nous avons-aussi essay4ide relitcher la contrainle Am = 0 au bord (IC fuite. Confornte'ient A-I'titude
tlitorique-qui prtivoit In non-unicitti du Iprofl, pluasicurs piotils petivent. Utrecrou%&s Moln l'initialisatioa.
Nous inontrois-stir Ia figure 7an Ics iodificat inns successives dii profil A, tparttr dv 141- croisicnlv ittitialisat ionl
prdc~dcensnent dticritc. Le ninillage autour dtiprolil convergei ainsi que les Iigiie% iso-isoinlre de Macli monl.
aussi-montries; (fig.7b et. c): Ia (distribution pajitale obtcnue es.mncellt. inposec.

Ddterrnination-d'un Profl de-Redresseur
Pour cet cxcnapk., la distribution (Ie vitesse reprubcnttie stir hi figure 8 a tuI(' rotiiuie. Les-detix versions

(11a Ct ) du code-out 46t testtiet;avcc les initialisat ions suivaat.5:
iviaiiage en-ii: profli (a epai~seur ilie 0 '(tiatioia y 0,
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9 Maillage enl C. pi old N A12ayiy sui'iv~n -iotaltionl de 5 degil;&.
Los figures 9a 0t, 1) milnrro. Iers Ilodilirat is (1(esi"-.d% prolils .4 pinn i- de 1itiisa tioll. Les
niaillages autour despiolils coniverges* son!. ceux ayantservi d'illtastration Jpi&clejiitit (fig.'la-et b)-

Les formnes; des prolils obtetous sow, voisines (ligio); cepi)Cnt~ai le prolil obteuit avec Ia -versioni Pci If
(flg.I0a)-reste poiiih alors-(jue lu-prolil oIltdnU avecc e aillage eni C' (lig.l01h) est arroodi. Les r~sultats
d'uni calcu I (iredt ant our do ces prolils mon trent. Ie torilleuir resprL de Ia dist ribulIion de Ia vi Lesse iinIose
par le prolil obtenu par lecCodle aver ninillage enl C. Le pas iclatif (raplxntd i la corde du profil) est
egaloinent calcuhe par le code; 1(-s valcurs olLeties sont- voisiines- 0 .0908 pour Je code avec ntaillage onl C et
0.0787 pour le code avee iiailhigo eln II. La valcur pluis petite calctiIe avec le Code avec Inlaillage enl If
s'explique par le bord (Iattiaqpiopoiti-du prolil qui allonge -Ir prolil et (lone dimlinm 1.1I valcur de h, .

114sultat d'un calcul inverse quasi-tridizncnsionnel

Le-probIibue conisiste i retiouver tiol pilil 5 partir des tesutlts obleivis par in calcul direct par ulie
m~thodc de differences fillies. Lecs donn~cs soot Is suivautes:
o douine de Ia iimppje souts la foritic (]'tinle stric de points (z,, rI,',) i:ts %ill Ia figmr lia,
# doije ilieC (limtribu ion diri- Itibre deo Wll enl fond ion de. I ablscisse St iur P ext iado .0 l'ill t a(IOS
(figure I Ib),
* vitesse do rotation-doe la roue: w -0551 lotiltras/nnie,
* conditions g~nfrafrices: At, 0.001, &1 = 35. -11.88'
* temperature totaic onl reJ~re-Iixe: T,' = 2883' K.

Los r~suktats obteous sur cc cas test soot unoutr6s stir Ia figure 12. 11- inoirent los modifications
successives i pantir dWim piolil injitial (NACA12 ayaot subi uuo rotationi de 20 degr-4-) vers ui-prol A bord
d'attaque arrondi. Cc mimiu pertitet d'autro part de calculer Jo pas. onl oliriit h = 0.1807 cc qui

correspond a-3.3-aulbrs.
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b) Variables ,:, bet-r
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Figure-1: DNfinition-dc Ia, G~omdtrie Quasi-Tridirmersionniellc

ab) Topologic en 

Figure 2: Topologies du Domaine-cde Caizul
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a) Mod~le dc Transpiration b) Ddplacement du Profil

Figure 3:. Ddplacemcnt Normal du Profil

a) MaIig In tilIII IIIIII

b) Maillage en-C

Figure-4: Examnples dc Maillages

I.I'm

b) Rdpartition du Nombre de Macli sur Ic Profil

Figure 5: -Profll li1obson
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1.0 Modifications Profil Converg6

a) Dix Prcmi~res-Modifications et Profil Convergd

b)-Maillage Obtenu c)-I~ignes Iso-Noinbre de Mach

Figure 7:-Non-Unicitd dle-a Solution du Calcul Inverse

.- - 1 i79

.22

Pigure 8:-Distribution dui Nombre deC Mach pour-Ic Calcul dlu-Redresseur
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a) Modifications Successives du Profil (Version en II)

b)-Mod ifications -Successives du-Profil (Version- en 0)

Figure-0: Modifications- du Profil pour le Calcul Inverse du Redresseur

a)-Profil~ h --en 0ve. 66 Ma77 en-77

-bProfl Obtenu avec le Maillage en-C1

Figure 10: Comparaison-entre les Profils Obtenus
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Application of an, Inverse Method to the Design of a Radial Inflow Turbine

Jol"o Eduardo Borges

Instituto Superior Tdcnico,
Mechanical Engineering Department

Av. Rovisco Pais
1096 Lisboa Codex

PORTUGAL

Summary

A truly three-dimensional inverse method is described and applied to the design of the rotor
of a radial inflow turbine with a specific speed equal to 0.6. The described indirect method uses a
mean swirl (i. e. radius times mean tangential velocity) specification and applies to inviscid and
incompressible fluid. In addition, it is assumed that the inlet flow is uniform and that the blades are
infinitely thin. The action of the blades is modelled by surface vorticity, using the Clebsch formulation
for the calculation of the velocity field. The blade shape is evaluated by requiring it to be aligned
with the local velocity vectors throughout its entire length. Since the vorticity depends on the blade
shape, the problem must be solved iteratively. As tile mean swirl specification is not a familiar input
design, its physical significance is discussed and some advice is given on the best way of choosing it.
Finafly, the results of some experimental tests are briefly discussed. In these teks the performance of
a rotor designed using the present indirect methoc was compared with that achieved by an impeller
designed using conventional techniques. It is shown that the rotor designed using the inverse method
is more efficient than the conventional impeller.

Notation
B number of blades 0 angular coordinate

CP pressure coefficient (see (33)) E coordinate in the transformed domain
D rotor tip diameter p density
f angular coordinate of-blade surface (wrap ork Lanczos'smoothing factors

angle) in radians -D potential

k integer %P streamrfunction
m along a streamline UP rotational speed
n normal to a boundary ft vorticity

N number of harmonics used
N, specific speed (non-dimensional- see (31)) Subscripts

p static pressure b1 referring to blade
po stagnation pressure downstream referring to the downstream boundary
Q volume flow k kth harmonic
r radius o mean value

rV mean swirl (radius times mean tangential r in the radial direction
velocity) ref reference-value

S saw-tooth function tip tip of impeller
U blade speed upstream referring to the upstream boindary

R41 periodic absolute velocity at the blade (see z in the axial direction
(28)) 0 in the tangential direction

y absolute velocity t turbine inlet
iV mean tangential velocity 3 turbine exit

W relative velocity Superscripts
z axial coordinate
a auxiliary coordinate (see (4)) e cosine harmonic
r circulation s sine harmonic
6, periodic delta function + suction-surface
q/ coordinate in the transformed domain pressure surface

1. Introduction and Literature Survey.

When designing a radial inflow turbine for a particular application, the first step to be taken
is the choice of overall dimensions and parameter suitable for the case in study. This preliminary
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design is done using one-dimensional calculations based on simple models and past experience,
correlated ii terms of non-dimensional similarity parameters.

A classical example of this sort of approach is provided by Rohlik [1]. In this work optimum
design parameters, such as ratio of overall dimensions, angles and blade-jet speed ratio, were
calculated using a simple one.dimeesional model. The unidimensional loss model used took into
account the stator and rotor boundary layers, rotor blade tip clearance, disc windage and kinetic
energy loss at exit. The optimum design parameters were determined so as to maximize the overall
efficiency and were correlated as functions -of the specific speed. The theoretical results thus obtained
are in agreement with the experimental results described in Kofskey and Wasserbauer [2] and
Kofskey and Nusbaum [3].

The information presented in reports like these ones permits the choice of tile overall
dimensions and rotational speed of the turbim., given the desired nominal conditions (mass flow and
power). -However, at the end of this preliminary design, the blade geometry is not defined in great
detail, this detailed definition of the turbine geometry being the object of the next stage in the design
process. A study of the published literature and of the present state-of-art shows that usually the
detailed definition of the turbine, geometry is done by using iteratively direct or analysis codes. This
process consists in guessing a blade geometry, and - then analysing the flow field produced by it using
direct -odes. If adequate flow field conditions are not achieved, than a new blade geometry is
guessed: and the whole process is repeated, until the desired results are obtained, eventually.

The task of guessing a blade geometry has been done in a great variety of ways. For
example, it is common to use straight lines and circular arcs, or in general conic sections (such as
ellipse arcs), both in the definition of the mt ridional geometry and of the camber surface (see Moore
(4)). Another different-form of doing this is presented in ,iaines et al. [5] who used Lam6 ovals for the
definition of the geometry of mixed flow turbines.

Techniques used for the definition of the rotor geometry of centrifugal compressors can also
be used for the case of radial inflow -turbines, since the iroblens to be solved are quite similar. So,
three-dimensional analytic surfaces defined with the heip Jf the interpolation formulae of Coons could
be used for this purpose, as was done by Smith and Meryweather [6] and Came [7], or alternatively,
-Bernstein-B6zier surfaces could be used, an example being the work of Casey [81.

A slightly different way of generating the blade geometry is that applied by Smith et al. [9]
to the design of two radial inflow turbines and described in more detail in Plait (10]. In this instance,
the blade is generated by a series of straight-line generatrices which are defined either by joining tile
camberlines spegified along the shioud and hub or by giving the three-dimensional orientation of the
genecratrices and the camberline on the shroud. These camberlines are determined using a specified
blade camber angle distribution or estimated by imposing a desired aerodynamic loading.

Once the meridional and blade geometry are defined in detail using any one of the above
methods, an analysis or direct code is run to check if the flow field conforms with the conditions the
designer wishes to obtain. There are a great number of analysis programs that can be used for this
task, either hub-to-shroud, quasi-thiee-dimensional or completely three-dimensional. In fact, most of
the papers mentioned above also describe analysis codes directly connected to the geometry
generating programs. Other possible alternatives include the throughflow program published by
Katsanis and McNally [11], which is based on a finite-difference stream function solution, file quasi-
three-dimensional method presented in Katsanis [12] which uses the streamline curvaturc, technique
both in the hub-to-shroud and blade-to-blade planes or -the three-dimensional time-marching method
described--in Denton [13], but this list is by -no means exhaustive.

This method of designing radial inflow turbines through the iterative use of analysis
programs, which is typical of the present state-of-the-art, is recognized to be an inefficient process
which may lead to a geometry far from the optimal configuration. Ideally, the blade geometry should
be defined using -inverse codes, by which it is meant programs that automatically calculate the blade
shape required for obtaining -certain flow field conditions specified as input to the process.
Nevertheless, as far as the author is aware, this is seldom the case when designing this sort of
machines. In part, this state of affairs is due to the fact that the flow inside the rotor of a radial
inflow turbine is highly three-dimensional. Therefore, for an inverse method to stand a chance of
being successful, it must take into account three-dimensional effects. -However, there are only a
handful of published indirect methods that are truly three-dimensional, the overwhelming majority of
-indirect methods being two-dimensional (mostly blade..to-blade and a few iub-to-shroud). Instances
of three-dimensional inverse methods- can be found in the work of Falclo [14] who used the concept of
liiting surface and in Tan et al. [15] who developed a method using as input specification, a

distribution of mean swirl (radius times mean tangential absolute velocity, rV0 ) and determine the
venocity.., by using -then°, . _€,,sc .... u! ,t,, Another ecxamp!e ;.- provided,,., by Z..'hao et'+ a!. [,- ,"+wou

Taylor series expansion in the circumferential direction and uses as design specification an imposition
of the value- of rV0 (radius times tangential velocity) at- the mean stream surface. Nevertheless, none
of these three-dimensional inverse methods have been applied to radial inflow turbines, the examples
of application piesented in these reports being either linear cascades or axial turbomachines.
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In the present report, the application of a truly three-dimensional inverse method to the
rotor design of a radial inflow turbine is described. The design technique used is an extension of the
method proposed in (15], to radial turbomachinery. This extension entails the use of more general
boundary conditions in the partial differential equations ([15] only considered mean swirl
distributions which were functions of axial distance z, a fact that leads to considerable simplification
in the boundary conditions), and a different form of solution of the resultant partial differential
equations - instead of using spectral methods as was done in [15], the partial differential equations
are solved using finite difference techniques. Due to these modifications the present method is able to
cope with the more general geometries typical of radial inflow turbines (and in general, radial
turbomachinery) and is not restricted to simple annular ducts with constant hub and tip radius which
were the only cases considered in [15]. However and similarly to what is done in [151 it is assumed
that the blades are infinitely thin and that the fluid is inviscid and incompressible. In addition, only
blade rows that accept an uniform inlet flow and do constant work along the span are considered.

2. Description of the Design Method.

The inverse method to be presented uses as design specification a mean swirl ( rVO )
distribution instead of imposing, for example, the velocity distribution on both blade surfaces.
Although it may seem a rather odd specification at first sight, it is ideally suited to a three-
dimensional situation because it can be specified without unduly inflexible restrictions. In fact, it is
not necessary to impose restrictions on this sort of input, like those that are needed if the velocity
along the whole blade surface was to be imposed, restrictions that are difficult to satisfy (they involve
the calculations of integrals). In.conjunction with this point, note that in a three-dimensional situation
these restrictions would be even more complicated and severe than the corresponding conditions for a
two-dimensional case, since the velocity level in the shroud stream surface depends on the velocity
level on the hub stream surface and the curvature of the machine in the meridional plane.

In addition, the quantity rV plays an important physical role, since it is the mean angular
momentum per unit mass and so is related to the way work is imparted to the fluid as it moves
through the machine. As the mean angular momentum can only be changed by a tangential force, the
way it varies along a streamline gives us an idea of the variation of this tangential force, or in other
words, gives an idea of the blade pressure loading.

Another physical interpretation for the quantity rV consists in saying that it is directly
proportional to the circulation r, a relation that can be easily justified making use of the definitions of

r and rVo . In fact, the circulation at a given point can be eahtulated, as usual by the integral:

r rf J redo 1

where 0 is the angular coordinate, r is the radius (here and in the following, a right-handed cylindrical
polar coordinate system defined by (rO,z) will be used) and V 0 is the local value of the absolute
tangential velocity. On the other hand, the definition of mean absolute tangential velocity is given
similarly to the definition of mean of any other quantity, by:

2 fV=dO (2)

where Vo is the mean value and Vo the local value of the absolute tangential velocity (mean values
will be denoted with an overbar in this report) and B is the number of blades of the cascade being

designed. Comparing Eqs.(I) and (2) it is seen that the relation between the circulation r and rP0 is
quite simply:

r = 27rTV (3)

The interpretation of rVo as being linked to the circulation r is useful when considering what
happens downstream of a blade row. If the circulation ris not constant at the trailing edge than thereSi:.. * -- L -- ' - .i dgw Th-11: U,. .. .-o,..T, .. +.,= vord'..,cS issu1ing ""~ o.."+ *+i,, f .1c^ Wad.c nT.c= ... . ... :+,

will have some kinetic energy associated with them, so that the exit flow will possess a kinetic energy
greater than the minimum possible. Therefore, if one wants to minimize the exit kinetic energy loss,
in order to obtain as good a total-to-static efficiency as possible, it is essential to reduce these trailing
vortices to a minimum (or to zero if that is feasible). Perhaps this argument is best understood if a
parallel with external aerodynamics is made. In fact, it is a well known fact that for a finite wing the



circulation can not be constant along the span, and that fact is linked with the existence of a surface of
vortices issuing from the wing trailing edge. It is also known that there is a distribution (more
precisely, an elliptic distribution of circulation) that minimizes the kinetic energy associated with the
trailing surface of vortices leading to the best design for the wing. Returning to the internal
aerodynamics case, the circulation distribution _ that minimizes the exit kinetic energy loss, is a
constant circulation along the trailing edge, for which case, there are no additional trailing vortices
being introduced in the flow. In other words, if the total-to-static efficiency of a blade row is to be

maximized than that blade row should be designed so that rVO at the trailing edge is constant,
implying constant work along the span if the inlet flow is uniform. For these conditions (irrotational
inlet flow of an inviscid fluid and constant circulation), there is no trailing vorticity issuing from the
blades and so the flow must remain everywhere irrotational according to Kelvin's theorem. So, if
there is any vorticity at all, it must be bound to the blade surfaces, and indeed, the action of the
blades (supposed to have zero thickness) is modelled by sheets of vorticity whose strength can be
known.

Before going on discussing the value of vorticity, it is convenient to have a simple way of
defining the blade gcor.letry. In the present work this is done introducing an auxiliary coordinate a
defined by:

a =o- f(T, ) (4)

where f(r, z) is the angular coordinate of a- point on the blade surface (f will be called wrap angle in
the following). This variable a can be interpreted as a sort of helical angular coordinate, that takes a
constant value along each blade. More precisely, the blade surfaces are obtained when:

2kex = f- r, k .. -~,2.. 5

Now that the blades are easily defined in terms of ac, let us return to the discussion of the
value of vorticity. Since the velocity field is solenoidal (i.e., V.Q = 0), it can be written as the cross
product-of two gradients of scalar functions. It is convenient to-choose one of the factors of this cross
product as V a-because it is already known that the vorticity is lying on the blade surfaces and so it
must be normal to the vector V ac (recall that V ais perpendicular to surfaces--= const. and that the
cross product is p,.pendicular to any of its factors). If this choice is made, it turns out that the other

factor is VrVo  as is shown in -more detail in Borges [17). Therefore, the final form for the vorticity
vector is:

a= [vTV. X Val 6,(.) (6)

where 6p(a) is the periodic delta function and gives the dependence of the vorticity vector on the
angular coordinate - the vorticity is zero throughout, except at the blades where it takes the infinite
value responsible for the velocity jump occurring there. The Fourier expansion of the periodic delta
function is:

4(a) = 1 + 2 2cos(kBa) (7)
k--

The knowledge of all the vorticity existing in the flow field enables us to evaluate the
complete velocity field, a task done in our case, using the Clebsch formulation. After the velocity is
determined, the blade shape is ralculated requiring it to be parallel to the local velocity vector,
throughout its length. Sincu the vorticity depends on the blade shape through the variable a, the
problem must be solved iteratively. This is, in brief, the basic idea of the method being described,
and which will be explained in more detail in the following two subsections.

2.1- Velocity Field
-As already discussed, the velocity field will be calculated from the knowledge of the

vorticity, using the Clebsch formulation. In this formulation, the velocity is written in such a way that
itm curl gives identically the vorticity existing in the flow-field. The adopted expression must depend
on an unknown scalar function which is then evaluated by satisfying the continuity equation. Putting
th6i idea intu ptuikx, the vr0iu.y will bc written as:

S= V 4r,0,z) - rVVa -S(a)Vr t (8a)

inside the blade passage and as:
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=YV'(rOz) (8b)

outside it. In these equations, 1 is a potential, so that V1 accounts for the irrotational part of the
velocity (its curl is zero), while the other two terms are rotational. The function S(o) is to be
determined in such a way that the curl of Eq.(8) is equal to the expression giving the vorticity and
presented in Eq.(6). So, taking the curl of (8), we arrive at:

IV x V1 = I'(c) + 11V, x Va (9)

which, when compared with Eq.(6), shows that S(x) must be a function defined by:

s'(a) = 6() - 1 (10)

This shows that S(c) is the integral of (8p(c)-l), or, in other words, it is the periodic sawtooth function
with zero mean value. Its Fourier expansion is:

S(o) = - -sln(kfa) os(k) n(kBO)- cos(kBO) (II)=kB kb nk kbk~l k=-I

Now that the unknown function S(m) has been determined using one of the conditions that
Eq.(8) must satisfy, namely the value of vorticity, it is necessary now to evaluate the unknown scalar
function D(rO,z). This unknown will be calculated forcing the velocity field defined by Eq.(8) to
satisfy the continuity equation. For incompressible flow, the continuity equation takes the form:

V .V=0 (12)

Substituting here the value of the velocity X given by Eq.(8), the following equation is
obtained:

V=* = -r a 4 js'(,) + I]Va. VrV, + S(a)VrV, (13a)

inside the blade region and:

V = 0 (13b)

outside it.
For the solution of this equation in 0, and since the flow variables are periodic in the

tangential direction, both (P and the remaining terms appearing in Eq.(13) are going to be expanded in
a Fourier series in the tangential direction. For example, (D will be written as:

30=,(r,z) + >4'k(r,z)cos(kB0) + E bl(r,z)sin(kt30) (14)
k.) kol

Then, by equating the values of all the harmonics a second-order differential equation is obtained for
each of the harmonics of 4). For example, the mean value of (P, Qo(r,z), is calculated by solving the
following Poisson equation:

+ + 0 Z ,0 '0;. 0 I --O ]  (15a)

inside the blade passage and
024', 1 04, d

2
', -Ih

0+ -D +"0 'A. = 0 (15b)

upstream and downstream of the blade row.

For the kth cosine harmonic of (1), represented by DcX(rz), the equation to solve is:

524r
- - 2 B' O k 2  [v V 2sin(kBf) + [T. VrV,] 2¢os(ktf) (1 6a)

+ + k' = - LV r~ o~~f
0. rOr a2 r2  

I kD

in the bladed region and

- + ! '+ -L - .4', 0 (16b)
or r a a r 7 s n = o

outside the bladed region. Similarly, the kth sine harmonic of (1), represented by 05)(r,z), satisfkis the
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following equation: !
024).[ 104'V 024)[ k2 B 2cofk"" +;-* + - ") [V!rV s( ) + [V W V r V' 2sin(kBf) (17a)

Tr- ra zI r
2  

' kJJ

inside the blade passage and

"-+ 2+ O r 2 ,=0 (17b)

outside the blade passage. Equations (16) and (17) are partial differential equations of the Helmholtz
type.

The determination of (D requires the solution, in the meridional section of the turbomachine,
of Eq.(15) and one pair of Eqs,(16), (17) for each harmonic considered in the Fourier expansion. This
can be done provide appropriate boundary conditions are imposed at the endwalls and at the far-
upstream and fir-downstream boundaries.

The boundary condition to be imposed at the endwalls (hub and shroud) states that there is
no flow through these solid surfaces, a fact that can be expressed mathematically as:

X-a~o(18)

where IL is the normal vector to the endwalls. Using the expression (8) for the velocity, and

considering the expansion of (D in a Fourier series, it is seen that a0, 1 k and 0 s must satisfy the
following boundary conditions at the endwalls, respectively:

04 -- _' (19a)

On kB On
O_ = 2cos(klif) OrV# (19c)
On kB On

inside the blade region and:

al)o _ OMk O4)k (20)€. = .- = -07 = o02o
On On On

outside the blade region. The partial derivatives appearing in these boundary conditions are taken in
the direction normal to the endwalls.

At the far-upstream the flow is uniform according to an assumption already made. At the
-far-downstream boundary a similar condition applies since the flow is irrotational and there is no
trailing vorticity being introduced in the flow. This implies that the boundary condition for the mean
value of the potential, (o, is :

V4)O = -upstream = Const. (21 a)

at tei upstream boundary and at the downstream boundary is:

V'N = "VdownstLrem = Const. (21 b)

where Y-.upstream and Ydownstrean are tespectively the uniform velocity at the far-upstream
boundary and at the -far-downstream boundary. As they are supposed to be constant values, they can
be evaluated from the specified flow-rate and the passage area of the corresponding boundaries.

For the remaining harmonics of 4,, the boundary conditions to be imposed are:

44=0 o (22a)

0" - (22b)

taking the same form both at the far-upstream and far-downstream boundaries. This condition can
be justified bearing in mind that, since the flow is uniform at the far-upstream and far-downstream
boundaries, the higher order harmonics must contribute a zero value to the velocity (the periodic
vel.y0 beero' Tis c-n ony b the case- for the- 0 component of the velocity, if conditions
(22) are satisfied, according to Eqs.(8) and (14).

The mean flow field can be calculated using a partial differential equation different from
Eq.(15). This other way of solving the mean flow field uses the streamfunction concept, IF, and it can
be shown (see [171) thai- the equation to be solved in this case is:
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O~P O~ ~h1 rf OrV# Of OrVO (23)T 2' , a t O Z2 a= - aL  a r
inside the blade passage and outside it, the right-hand side of (23) is equal to zero. These two
approaches are equivalent since they satisfy the same conditions, namely the continuity equation for
incompressible flow and the condition stating that the curl of the mean velocity is equal to the mean
value of the vorticity (mean value of expression (6) - see [171). However this last equation based on
the streamfunction has boundary conditions more easily imposed - for example, at the endwalls, the
boundary conditions are of the Dirichlet type, since at the endwalls the streanifunction is a constant.
For this reason, in the Fortran program written to implement the present inverse method, the mean
flow was calculated using Eq.(23).

There is one last condition that the velocity field calculations must satisfy which is the Kutta-
Joukowski, condition, requiring zero pressure loading at the trailing edge. In order to impose this
condition, an expression for the blade pressure loading is needed. In [171 it is shown that this
pressure loading is given by:

P -P" § bl - Vr (24)

where p is the density of the fluid and p+and p-are respectively the static pressures on the suction
and pressure surfaces of the blade and the term }3Yb represents the relative velocity calculated at the
blade sheet (for example, for cc=0). Making use of Eq.(24), it.is seen that the Kutta-Joukowski requires
that:

Wbl" VrV* = 0 (25)

In-the present method, this condition is satisfied by specifying an rVo distribution that is constant
along the trailing edge and which has zero derivative perpendicularly to it. In this way condition (25)

is automatically, satisfied, because VrVo = 0 at the trailing edge. A similar condition is also imposed at
the leading edge which corresponds to designing a blade row that is exactly aligned with the local
velocity vector at the leading edge, so that the pressure loading there is zero.

2.2 Calculation of Blade Camber.
In the previous subsection, the method for the calculation of the flow field was discussed, but

the blade shape was supposed to be known. However, the determination of the blade shape is the
principal aim of this inverse method, so that an equation for its calculation must be provided. This
will be -done by requiring that the blade be aligned with the local relative velocity vector, Wbl. This
condition can be expressed mathematically as:

Wbl Va = 0 (26)

noting again that Vct is a vector normal to the blade camber surface. This equation can be expanded
in the form:

[ + V7, +.,] L' = ", + (27)

where f is the angular coordinate of the blade camber surface, or wrap angle, and o) is the rotational

speed of the blade row. Vr,V 0 and V are the three components of the mean absolute velocity and vrbl,

Xobt and VXbt are the three components of the periodic absolute velocity evaluated at the blade (a =- 0).
This periodic component of velocity at the blade is tle summation of the contribution of all the
periodic harmonics and is calculated by:

= £ a r,) 0'- 4cos(Uf) + ( sin(kBf) (28a)
ka Or k(28

'kB k~,, - - 4(r,z)sin(kB) + >-4D'(rz)cos(k.f) (28b)
k.1l 7 k=1 r

,= ----(r,z) + a(r,z) sin(kBf) (28e)

Equation (27) will be referred to as the blade boundary condition in the following and its
solution will give us the desired blade shape, provided the velocity at the blade is known. The values
of the blade velocity are known from the previous iteration, being calculated with the help of the
equations described in subsection 2.1 -nd using Eqs.(28). 'rho blade boundary condition is a first-
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order partial differential equation with characteristic lines coincident with the meridional projection
of the blade streamlines. In order to integrate this differential equation, some initial data (values of f)
must be specified along a line roughly perpendicular to these characteristic lines and extending from
hub to shroud. This initial data on f will be called the stacking condition of the blade. In our method
this stacking condition is implemented by giving as input, the values of blade wrap angle, f, along a
quasi-orthogonal, for example, at the leading edge.

If in the calculations described so far, the periodic value of the velocity (Eqs.(28)) is
neglected; a simpler version of the inverse method is obtained which is simply a hub-to-shroud
method and not a truly three-dimersional technique. This axisymmetric solution requires much less
computing power than the three-dimensional solution since one only needs to solve two differential
partial equations, Eq.(23) (or alternatively, Eq.(15)) for the mean flow and tile blade boundary
condition, Eq.(27). This simpler inverse technique is designated an actuator duct solution in [15] and
that name will be adopted here.

2.3 Numerical Techniques Used.
The calculation of the velocity field and blade shape requires the solution of partial

differential equations on the meridional section of the turbomachine. This meridional section has, in
general, a complicated geometry with curved endwalls, especially in the case of radial turbomachinery
(see Fig. I as an example). In order to avoid numerical difficulties with the implementation of the
boundary conditions at the curved endwalls, and the possible loss of accuracy, it was decided to use a
transformation of coordinates from (r,z) to a body-fitted curvilinear coordinate system ( , r1) with the
points equally distributed along quasi-orthogonals, extending from hub-to-shroud, obtaining a grid

* like the one shown in Fig. 1. A moze complete discussion of this technique and some examples of its
practical application to the sol ution of partial differential equations can be found in Thompson et al.
[181. The form taken by equations (15), (16), (17) and (27) in the transformed numerical plane is
given in [171.

The equations for the calculation of the velocity field in the transformed numerical plane are
solved using finite difference techniques. It is used thror'ghout second-order accurate, central
difference formulae and a nine-point numerical molecule (see (17]). The resulting finite difference
equations are solved by relaxation, the particular method used in our case being tlic Gauss-Seidel
relaxation scheme. In our program this was implemented in conjunction with a multi-grid technique
in order to accelerate the convergence rate of the solution. A good description and discussion of
multi-grid methods can be found in Hackbusch and Trottenberg [19], together with several instances
of its practical implementation.

Finite difference techniques- are also used for the solution of the blade bouidary condition in
the transformed numerical plane. -However, this time it is not possible to use a relaxation scheme
similar to the one used for the velocity calculation because Eq.(27) is a first-order differential
equation which must be solved by respecting the direction of the characteristic lines. Due to this fact,
the blade boundary condition is solved using an Euler's modified method (see Roache [20]). This is an
implicit numerical scheme that has a truncation error of second order in All and A 'and is consistent
and stable. In order to start this method the values of wrap angle, f, must be known along an initial
quasi-orthogonal. This information is provided by the stacking condition.

It is obvious that there is a need to truncate the Fourier series for the velocity profile in the
tangential direction after a certain, finite, number of harmonics. Since the velocity profile is
discontinuous across the blade, it is then inevitable that the Gibbs phenomenon will appear. This
phenomenon is present no matter how many harmonics are taken in the truncated series, seriously
affecting the accuracy of the flow calculation near the blade. In order to counteract this influence, it
was decided to use the "Lanezos' smoothing factors" (see Lanezos 121]), which is a sort of numerical
filter. This procedure consists in multiplying each harmonic by a factor Gk depending on the
maximum.number of harmonies used, N. These factors are defined by:

sin rfe) (29)
N I

For an assessment of the influence of the truncation of the Fourier series into the accuracy of tho
method, a comparison was made between a test case with 15 harmonics aiid another with 30
harmonics. The case considered was the rotor redesign to be discussed later, the maximum difference
found in wrap angle, f, between the two runs being 0.0028 rad (0A6 0 ). This is a value smaller than
the unavoidable manufacturing errors, and so can be considered acceptable.

If trying -t -Ol~ve the cqualiuni in the form just presented, it is found that the velocity shows
a logarithmic singular behaviour at the intersection of the blades with the endwalls, leading to a
divergence of the method. In order to better understand this sort of behaviour let us recall that,
when using a Clebsch formulation in the form:
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+= + +1V, (30)

the vortex lines lie at the intersection of the surfaces [t = const. and'v const.. In our case, this means

that the vortex lines lie at the intersection of the blades (oc = const.) and surfaces where rV0 = const.

(Fig. 3 gives the intersection of surfaces rV= const. with the meridional plane, for the particular

application discussed later in this paper). Since , in general, neithel the blade camber surface nor the

surfaces of constant swirl (rV= const.) intersect the endwalls perpendicularly it follows that, in
general, the vortex lines intersect the solid endwalls at an angle different from 900 (in fact, in cases

where dr:°- 0 , the numerical results show that . 0 ). If one tries to model the solid wall by

placing behind the wall- the reflexion of the original vortex line, a line vortex with a kink situated at
the solid wail will be obtained. However, it is a well known fact that this geometry leads to a
logarithmic singularity - see Brebner and Wyatt [221 who discuss theoretically this behaviour and
Kiichemann [23] who presents this effect in connection with the simulation of swept aircraft wings.
This last reference also describes some of the physical consequences of this vortex geometry, giving
the name of-kink effect to the phenomenon originated in this way. Similar problems also arise when
modelling cascades of swept blades as was shown in (14].

Ideally this singular behaviour should be handled in a analytical way in order to obtain exact
results. Unfortunately the problem is very complicated and non-linear, and an analytic solution is not
known. Therefore our only hope of tackling the problem is by making some numerical
approximations. So, it was decided to follow the suggestion made in [141 in the present study. This
consists in extrapolating towards the endwalls the results obtained a short distance from them. In our
case, this entails two approximations. in the first place, the term containing the velocity component

along the quasi-orthogonals is neglected in a small region near the endwalls, when solving the blade
boundary condition (i. e., the equation obtained from Eq.(27) after the transformation of coordinates is
done). This velocity is exactly equal to zero at the endwalls and it should have small values in the
regions where it is being neglected. The second approximation involves the boundary conditions for
the periodic velocity, Eqs.(19b) and (i9c), and consists in substituting the right-hand side of these

equations by zero (i.e., it is assumed that dn =0). A more detailed discussion of the approximations

made can be found in (17], together with some numerical tests that showed that these approximations
do not introduce appreciable errors in the main part of the flow field (its influence is restricted to the
small region near the endwalls where the approximations were introduced).

Finally, it should be noted that the equations must be solved iteratively, since the vorticity
depends on the blade shap- which is not known at the start of the method. Each iteration is started

by the calculation of the velocity field using the equations presented in subsection 2.1, and then the
blade shape is updated using the blade boundary condition, Eq.(27). Further information on the
numerical procedure can be found in [17].

3. Application to the design of a radial inflow turbine.

As an example of application of the three-dimensional inverse method just outlined, the
redesign of the rotor of a radial inflow turbine will be discused. This will be a stringent test since this
is a machine with important three-dimensional flows. The rotor that was redesigned belonged to a

low-speed model of a radial inflow turbine. Therefore, the flow can be considered incompressible and
the inverse method described can be applied.

The specific speed of this turbine, defined by:

has the value 0.6. This value was chosen because it is for values near this one that one can except the
best level of total-to-static efficiency for radial inflow turbines.

Both rotors (the original or conventional impeller and the new rotor, as they will be called,
for short) have the same tip diameter of 310 mm and 17 blades. The meridional geometry is also the
same for both rntor.g and i-, indicated in Fig. 1. The conventional rotor was designed using metheds

typical of the current know-how, i.e., was designed by an iterative use of direct methods and has
radial blades, It was tested in order to obtain a set of data typical of what can be achieved with the
present technology.
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The grid used in the inverse design calculations was formed by 145 quasi-orthogonals and
49 quasi-streamlines - every other line of the grid used is shown in Fig. 1. The number of harmonics
considered in the circumferential direction was 15 (each harmonic has two conponeits, the cosine
and sine one). Notice that the present grid has a region both upstream and downstream of tile
impeller, with 81 quasi-orthogonals placed inside the bladed region.

An, important input to the present inverse method is the specification of mean swirl, rV0 I on

the meridional section of the blade row to be designed. As discussed in (171, this sort of input is
chosen bearing in mind two main requirements:

- the pressure distribution on the blade surfaces should show a smooth evolution with the
loading distributed along the blades as evenly as possible;

- the variation in wrap angle, f, along the blade should not be excessive, in order to avoid a
highly twisted blade that would be very difficult to manufacture and could present high stress levels
for the rotational speeds usually used.

Both points can be controlled through an appropriate specification of mean swirl. In fact,

Eq.(24) shows that there is a close relationship between the derivatives of rV 0 and the pressure

loading across the blades. As a consequence, if a smooth variation of pressure loading is desired, it is

essential to specify the mean swirl, rV , so that its derivatives do not change abruptly. On the other

hand, the blade boundary equation (Eq.(27)) can be written along a streamline, in the form:

P (V. + N - d( 32)
f.- A,d

where a and b are two arbitrary points along the same streamline, (V-,+ Xmbl) is the blade velocity

component in the meridional plane and in is distance along the meridional projection of the
streamline. If it is desired to keep down the total variation of wrap angle between the leading and
trailing edges, it is convenient that the expression under the integral sign in Eq.(32) should present

small values. This can -be achieved if one specifies the value of- rV o -so that the value of 170 closely

follows the local value of the transport velocity, or . This is the more -important, the lower is the value

of radius, r, or the meridional velocity, (Vr+Ymtb). So, this means that at the hub, where the radius is

small and the meridional velocity usually takes the smallest values, it is highly recommended to

specify an rVo distribution following- the local value of wr 2 (see [17] for a more detailed discussion of
this point).

The specified rV 0 for the present application was chosen along these general guide-lines.

The impesed variation of mean swirl, rV0 , along hub and. shroud -is plotted in Fig. 2, and in Fig. 3 are

shown contours of the input rV0 in the meridional plane (in these two plots the linear dimensions

were made non-dimensional dividing them by the tip radius of the rotor and the velocities were non-

dimensionalised using the blade tip speed). As can be seen, the imposed variation is smooth

everywhere, although at hub the variation is clearly more irregular than at shroud. This is so because

in this particular case, the rV along the hub was chosen trying to minimize the total variation of wrap

angle. On the contrary, at the shroud, most consideration was given trying to obtain a smooth
variation of the pressure distribution on -the blade surfaces. This compromise resulted in a blade
which is heavily loaded at the hub inlet while, at the shroud, most of the load is concentrated near the
trailing edge.

The blade geometry obtained as output using the input just discussed, is described in the

next two figures. Fig. 4-is a-plot of wrap angle, f, along some typical quasi-streamlines, as a function
of meridional distance. The quasi-streamlines considered are hub, 1/4 of the span, mid-span, 3/4

span and shroud. This- plot- shows that -the maximum variation of wrap angle is not excessive, taking a
value around 0.75 rad- (this variation is of the order of 2 blade pitches for a rotor with 17 blades, as is
the case). The next figure, Fig. 5, is a plot- of contours of the wrap angle, f, on the meridional section of
the rotor. It should be noted that the resultant blade shape has double curvature (it could not be

generate by a straight line). Therefore, it would be very difficult, if not impossible, for a designer to
guess such a blade shape, and so, it is highly unlike that this design could ever be reached by an

iterative use of analysis programs. This illustrates one of the big advantages of inverse design
techniques.

Another important output of the present inverse method is the pressure distribution on the
blade surfaces. This result is presented in the next- plot, Fig. 6, which gives the pressure coefficient on

hub and shroud as a function of percent meridional distance. The value of the pressure coefficient Cp,
used in this- plot, is defined as:
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[-= -1 (33)

where Wre is the relative velocity at the intersection of the leading edge with hub. For the present
case, Wrer = 0.278 ortip. The pressure distribution has a smooth variation throughout except at the
shroud where it has a small dip, located towards the trailing edge at around 80% of tile meridional

*distance. This -dip is caused by a sudden change in the radius of curvature of the shroud profile in the
meridional plane (check with the next figure - the point A marked there corresponds to the
intersection of an arc of circle with a straight line and is coincident with the place where the dip
occurs). This suggests that the definition of the meridional section using only arcs of circle and
straight lines is not the best choice. However, this meridional geometry was not changed since, for
comparison purposes, it was advisable to maintain the meridional geometry the same for both rotors.

Contours of pressure coefficient, Cp, on the suction surface of the rotor blades are presented
in the next figure, Fig. 7, and Fig. 8 is the equivalent.plot for the pressure surface. These plots show
that the pressure distribution vary smoothly for the most part of both blade surfaces. The more
marked- exceptions are the region near the trailing edge where there is a rapid variation of Cp which is
a consequence of the rapid unloading imposed to the blades, and, to a less extent, the region near the
leading edge where again the pressure varies quickly, this time because of the rapid loading of the
blades.

It is instructive to compare this fully three-dimensional solution with the axisymmetric
solution or actuator duct solution as was called above. As in this solution only the mean flow is
computed, its representation of reality is less accurate than the completely three-dimensional
solution, the flow being modelled only in an average sense. This can be seen, comparing the next two
plots, Fig. 9 which gives the wrap angle along some typical quasi-streamlines and -Fig. 10 which
presents contours of the wrap angle with the corresponding figures for the three-dimensional
solution, Fig. 4 and Fig. 5. The differences are obvious, the actuator duet solution giving a less twisted
blade than the three-dimensional solution. This is in agreement with what one would expect, since in
the three-dimensional case the flow always -turns less thin the value of the blade angle. Therefore, in
order to obtain in the three-dimensional case the same mean swirl and mean quantities, it is
necessary to use a more curved blade.

Using the results of the actuator duct solution it is possible to estimate the blade velocities
and pressure distribution on the blade surfaces, by assuming a linear tangential variation for the
velocity profile, between the suction and pressure surfaces, A plot of the pressure coefficient, Cp,
calculated in this way, is shown on the next figure, for the hub and shroud streamlines (see Fig. 11).
Comparing this plot -with the corresponding results for the three-dimensional solution (Fig. 6) it is
seen that there are some differences between the two results, as one would expect. Nevertheless,
notice that the pressure distribution predicted by tile actuator duct solution gives a pretty good idea

-of the overall shape of -the pressure distribution. The same can be stated about the blade geometry
since the actuator duct solution gives a blade shape which is similar to the three-dimensional solution,
presenting the same sort of value -for- the total amount of blade twist (i.e. total variation in wrap
angle). This is an important asset because, as already mentioned, the actuator duct solution requires
much less computing time than the three-dimensional solution (typically, the computing time
required is two orders of magnitude less). So, tite above similarities can be explored with advantage
to scan quickly and inexpensively several inputs to the design program (in particular, different mean
swirl schedules): In fact, this was the process followed for the final choice of mean swirl distribution
used in the present design, among several other distributions that followed the guide-lines regarding
the control of pressure -loading and total amount of blade twist, discussed above.

The -rotor redesigned using an -earlier version of the inverse program just described was
actually built and tested. Its experimental performance was compared with that obtained with the
impeller typical of the present know-how. The tests involved the measurement of overall quantities
such as variation of efficiencies with volume flow together with some detailed traverses, using a
three-hole probe, made both upstream and downstream of the rotor.

A detailed description of the experimental results obtained from these tests can be found ill
[171. Here, the only results that will be presented are the variation of total-to-total and total-to-static
efficiencies as a function of non-dimensional volume flow (this non-dimensional volume flow is
defined as Q/oD 3 - see Fig. 12). For the calculation of these efficiencies, use was made of the mass
averaged values of the downstream stagnation and static pressures (these values were obtained from
the detailed traverses made).

First of all, notice that the peak value -for the total-to-static eff-.ciency of the conventional
impeller is around 88.3% which compares favourably with the present state-of-the-art. In fact Rohlik
[1] predicted a maximum value for the total-to-static efficiency of 0.87 for a specific speed around 0.6,
time. vmle. of s-cifi' -n""d of te. resent turbine. So--- excrimental resu!t5 d-c:cri.bd •a ["" a---. M
also corroborate this conclusion. For example, a maimum value of the total-to-static efficiency equal
to 0.87 was reported in [2] for a turbine with specific speed of 0.67 and Kofskey and Nusbaum 131
obtained a value of 0,880 for a specific speed of 0.59. More recently, Ribaud and Misehel [24]

---- --- ___
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measured a maximum value of 0.883 for tile total-to-static efficiency of a radial inflow turbine of
specific speed equal to 0.58. All these results indicate that the efficiency levels achieved by tile
conventional rotor are representative of the current know-how and so the conventional rotor is a good
standard against which to compare the performance of the new impeller.

Comparing the peak values of efficiency for both rotors, it is seen that tile new impeller gives
better results than the conventional built, both in a- total-to-total and total-to-static sense. Indeed,
the difference between the peak values of the total-to-static efficieny is 1'.7% and between the total-
to-total efficiencies a- difference of around 1.6% is found. These differences are significant, implying
that the redesign changed the blade geometry in the right direction.

Finally notice that- the improvements in the total-to-static efficiency are more marked than
the corresponding improvements in the total-to-total efficiency, and extend to all the volume flows
investigated. This indicates lower exit kinetic energy losses for the new impeller due to more orderly
exit flows and suggests that it is possible to improve the total-to-static efficiency by avoiding the
introduction in the flow field of unnecessary trailing vortices. In order to achieve this the blade rows
must be designed. so that they execute constant work along the span, as already mentioned.

In spite of the fact that the present inverse method leads to blades more difficult to
manufacture and is less familiar to turbine designers than present techniques, it should find
application in situations where efficiency is of paramount importance. More research should be done
on the extension of this method to compressible flow, on the inclusion of thickness effects and a more

careful investigation should be carried out on the best way of specifying the rV distribution.

4; Summary and Conclusions.

A review of the available literature showed that the usual way of designing radial inflow
turbines consists in tho iterative use of analysis or direct methods. As described, this, is a process
whereby a blade geometry is guessed, followed by a calculation of the flow field produced by it to
check whether it has desirable characteristics. This is recognized as being inefficient and time
consuming so- that it would seem appropriate to design this kind of machines using inverse methods.
-However, this only makes sense if a truly three-dimensional -inverse method is used because these
-turbomachines have significant -three-dimensional effects. This need for a three-dimensional inverse
method- was the -motivation behind the present work. In fact, a completely three-dimensional indirect
method was developed and applied to the redesign of an impeller of a -radial inflow turbine.

This inverse method uses as input a pregcribed mean swirl distribution specified throughout
the meridional section of- the turbomachine. -It can be applied to the design of rotating or stationary
blade rows with any amount of blade turning and any meridional section (either radial or axial).
However, in. the present- implementation it is supposed that the fluid passing through the
turbomachine is inviscid and -incompressible. In addition, it is assumed that the flow far upstream of
the blade row is uniform (irrotational) and the blades are considered to have zero thickness.

By applying this method to a concrete and difficult ease - the rotor of a radial inflow turbine
- it- was shown that- it is possible to obtain a design with a reasonable pressure distribution on the
blade surfaces, keeping at -the same time, the total amount of blade twist under acceptable limits.
This was achieved- by -means of a convenient choice of the mean swirl distribution. Based on the
experience obtained -with this design, some guide-lines for the choice of the mean swirl were
advanced which permitted a first approximation to the rT schedule to be used. For the final
selection of this input, it was found helpful to use an axisymmetric (actuator duct) solution since it
requires much less computing effort than the complete three-dimensional solution giving, however, a
good idea of the blade pressure distribution and total amount of blade twist. So the actuator duct

solution can be used to scan quickly and inexpensively several different rVo distributions.
All these theoretical considerations vere put into practice and experimentally verified by

actually testing an impeller -designed using an earlier version of this inverse method and comparing
its performance with that achieved by a rotor designed with conventional techniques. The results for
the new impeller showed an improvement in the peak values of the total-to-total and total-to-static
efficiencies over the corresponding values of the conventional rotor. As the performance of the
convendonal wheel could be considered typical of the present day technology, it can be concluded that

-this application of an inverse method was successful and constitutes an advance over what can be
done nowadays. Therefore, it is recommended that radial inflow turbines be designed using a truly
three-dimensional inverse method.
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I Introduction

it order to improve tie performance of modern highly loaded turbomachinery compo-
nents, attention must be paid in aerodynamic blade profiles design. The viscous effect
and shock intensities, for example, can be reduced by designig blade geometries which
give a proper velocity (or pressure) distribution.
A possible approach for designing blade rows consists on carring out successive modi-
fication of blade shape and direct flow field calculations in an iterative way. However
the procedure can be quite time consuming and does not provid. always the expected
results. A very interesting approach to design blade is given-by inverse method. That
is the designer prescribes some design data -satisfying some criteria, as for instance
minimizing viscous effects, and look- for-the shape that the walls-of the-blades have to
assume in order to satisfy the prescribed-flow properties.
The-time-dependent technique has-been-shown quite effective on solving -numerically
inverse problems -under the assumption ofzinviscid rotational flow fields, governed- by
Euler equations.
Following the-early formulations-given-in Ref. [1], the basic-idea is to consider bodies
with deformable walls -along- which velocity or pressure distributions are given together
with suitable conditions at infinity; an initial configuration-of the flow field and an ini-
tial shape of the deformiable walls-are guessed; the evolution in time of both-flow field
and walls-shape are described -numerically by integrating in time the-time-dependent
Euler equations by means of a, finite difference ietlod;-when the steady state is reached
the deformable walls assume-the shape that solves-the inverse problem.
Since-Ref. I] was published, several-improvements have been done. Upwind numerical
schemes have been adopted to attain consistency with the wave piopagation phenomena
described-by the Euler equations, as-a consequence the computation-at the boundaries

has -been improved; the extension to 3D problems has been- shown feasible; different
formulations havebeen attempted. The path of the evolution we-followed runs from
Ref. [1] to Ref. [5]. Similar ideas have been-pursued by other authors, see for instance
Ref. [6,7].
The aim-of the present work is the presentation-of-a newly improved method to solve
inverse problems for inviscid, compressible, rotational flows in 3D ducts or 3D rows of
blades. The basic -idea is the same aszin Ref. [1]: a finite-difference time-dependent
computation is performed in a channel whose walls are deformable and that adjust
themselves-to the design-data. In-the present 3D -formulation we follow the ideas out-
lined-in Ref. (81, we use a mathematical model-based on the contravariant components
of the flow velocity-and-a second-order accurated finite-difference scheme. A new pro-
cedure is used at the boundaries, which is-simfipler and more-rigorous than tie previous
one [4].

2 The mathematical model

Let us denote by yn, (n 1,...,4), the-cartesian- coordinate in the Euclidean space-
time four-dimensional-space, El, reserving the apex 4-to-denote time. Let us denote



14-2 ---

by x",(n = 1,...,4), a curvilinear-frame of reference in E4 , whose transformation from

the Cartesian coordinates has the form:

x* xa(Y"~) (a=1...3) (it= 1,....4)

X4 4

'The mapping 1 is sufficiently general to define the curvilinear, time- dep endent, body-
fitted grid we use to discretize the physical domain ir ur inverse method. Moreover, we
define-a vector Q in E4 , whose (contravariant) co,..jonents Q*(ae = 1,-.., 3)- coincide
with-the components of the flow velocity q-and whose time component is constant and
equal to one, Q4 1. With suchI assumpfions, the Euler equations canl be-writtei in
~forin-invariant for transformations with the form 1. According-to-tensor notations,

the SD time-dependent Euler equations canl- be written as:

Q~a + 6aQ* 0

Q'Q + a ( 6KS') -0- (2)
=n 0

where la'tin indexes-run from 1 to 4, greek indexes run from i to 3, "," denotes tenlsor
derivative, a is the speed of sound, 6 =2/(,y - 1), n = a/(27Y6), y is the specific heats
ratio and-ga, is-the metric-tensor and-all the-variables are normalized with respect to
sit tab~le- refe-renice- values.
Following Ref. [8), eqs. 2 canl be-rearranged-in a formi-suitable forupwind discretiz-
zation-bIy (hecomposing-te 3D unsteady motion-as due-to waves fronts parallel to-the
coordinate surfaces-the resulting set of equations prompt an-upwind-discretizatiom that
preserves tire 3D nature of-the-actual flow and that- is- particularly convenlient-from-tme
p~oinmt of-view of the treatment of-the-boundaries, as shown in section 3:

a,4 = -[6d+4,+?ld+1le +(d+(e]+6S,4

91 = 1

,4 [2116+ 9:2 0, -2 ~ + dI

(3)

Q2~~~~~ [2e& +- G-&)

9

S,4 a+ 17. +

The ternis in eqs. 3 are relative to waves fronts parallel to xl const.
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t = coInS, A = coust. surfaces, propaganting with-speeds A,, 42, p, respectively:

a=-Abs, Ab Q,
-_ AaI =QI

5 C
a lo:, QQ

- + ) =Q'-a

fla = -Ads,2 ,) a' Q

Q!, 
-(4)

Q,

Q!, Q2

71d - d K,2+ I'd = =Q2 + a4"r

?h =S,2 - - Vs," = Q2-a,/ P

Q9.3 93 ) 11b =Q,

e.4 - K9.3 - Pd3 Q1 -aQ/F

The ternms ., i;, (' express quantities carried-by the waves in- the unsteady motion, in
a numerical process they have to be approximated -by an upwind numerical scheie-to
preserve correctly the domain of dependence of the compute points. The nmmerical
schene we use is-explicit, second order accurated in time and space,-it is a variation of
tlhe -A-scheme described in Ref. [9].
hi order to senmlify the computation and to-improve the accuracy, we-prefer to avoid
(-xplicit evalutation of Christoffel symbols when computing the tensor derivatives of
#le vector Q. In-fact, a-tensor derivative has the gelieral form:

-Qk O, -- Q nr,

The balancing in 5 of the partial derivative, approximated by one-sided diffrences, and
the Christoffel symbol T!. evaluated on nodes. is-quite delicate. We prefer tn-base
our anproximation on the-formula:

= 0=" OX, (6)

I
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where Uj are the Cartesian components of Q.
It is also convenient to integrate in-time the Cartesian components of Q, getting-their
derivatives in time from eqs. 3 and-the formula:

auk = y k
,Q!4 (7)

OX4  OX'
avoiding- again- the ealutation of Christoffel symbols.

3 The formulation of the inverse problem

The numerical process that we- follow to solve 3D inverse problems is based on phy-
sical models that are straight forward extension of the 2D model of Ref. [2]. We
use as physical frame of reference-the cilindrical-coordinates instead of the Cartesian

coordinates, therefore tjie equations of section 2 have now to be read considering yl

as radius, 2 as tangential angle and y3 as axial coordinate. As a consequence some
equations have to-be modified. For-instance eq. 6 is replaced-by:

Q WniM +un5r ) O (8)

where U are the cilindrical contravariant components of the vector Q-and rin are tihe

Christoffel symbols in the cilindrical frame of reference.
We take into consideration-a channel whose-walls GLTQ and-CFPM are impermeable
and deformable, with DEON and HISR representing the-suction and pressure sides of
the blades,-respectively. Tihe surfaces GCFL and QMPT are the-annulus solids-walls,
the surface GCMQis the inlet surface-andLFPT is the outlet surface. Fig. 1) shows a
tipical initial- configuration-and Fig. 2) the shape ofthechannel -solving a given inverse
problem.
The inlet-and the exit surfaces are y3 =const. plane surfaces,the equations of the solid
surfaces are:

GCFL: Vy'=b(y3 )
(9)

QMPT: Yl = C(Y3)

The equations defining the flexible walls are:

CMPF : e = d(y',y3,y4)
(10)

GQTL: V = e(y',y 3,y4)

0' R M L .

R

G

!/ BB

A Fig. 1 Fig. 2
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The coordinate transformation: -

I =y (v-b)

(c- b)
2 (y' - d)

(e - d)

3 3

X4 4

is used to define a time-dependent grid that fits the walls and adapts itself to the
motion of the flexible walls.
Inverse problenms for blade to blade flows are constrained by the periodicity -C by the
requirement, identical from the geometrical viewpoint, that the blade profiles must be
closed: in fact, the pitch is a geometrical parameter that is known a priori as function
of the radius and that must be satified by the -solution of an inverse problem. The
3D inverse problem is formulated following [2]: we prescribe a design pressure jump
between pressure and suction sides .Ap and design- thikness t as function of radial and
axial coordinates

AP =fWY') , t = g(Y',Y 3 ) (12)

and look for tha blade camber geometry.
The whole flexible surfaces CFPM and GLTQ are computed satisfying eqs. 12: in
the CDNM, EFPO, GHRQ and ILTS surfaces in front and behind the blades eqs. 12
reduce to:

Ap = 0, t = 0 (13)

Total temperature, entropy and flow direction ar. prescribed at inlet suface, static
pressure is prescribed at exit surface in case of subsonic flow; the -vanishing of tlte
normal conponent of the flow velocity is imposed on solid walls. With such boundary
conditions-a time dependent computation is performed over the x i grid 11 according
to the numerical scheme described on the previous section. Fig. 2), for instance, shows
the shape that the channel has-at tlte end of the transient, solving the inverse problem
for the prescribed pressure distributions orer the flexible walls.
The enforcement of the boundary conditions is the most delicate operation of the
numerical process, depending the solution primarly on the boundary conditions, We
use the same general idea of-Refs. [8,10: at each boundary a certain number of -
or il, or 4, express the propagation of signals coming inward from the boundary, such
terms depend on the boundary conditions and are indipendent of the inner flow field.
In the numerical process, they cannot be computed according to eqs. 3, but they
must be computed enforcing some boundary conditions. The number of boundary
conditions needed by the finite difference equations (FDE) does not necessarily nmatch
the numberof boundary conditions needed by the partial differential equations (PDE);
if the boundary conditions needed by the FDE outnumber the boundary conditions
needed-by the PDE some additional numerical boundary conditions must be enforced.
It is quite obvious that an algorithm that asks always for the FDE the same boundary
conditions as for the PDE is optimal, this is the case of the numerical scheme applied
to eqs. 3. Details on this-matter can be found in Ref. [8].

Let us consider, for instance the GCFL surface of Figs. 1), 2). At this boundary, the
, refering to positive speeds od propagation, A, > 0, have to be computed enforcing

die boundary comitions. The GCFL surface is a solid wall, the physical boundary
..... .... inng of-the numaltl4I -colponent nf time flow velocity, that is:

Q=o (14)

I_ --... . .. .. ...... .- -- ~ __ --- ==
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There is one positive speed of propagation in xI direction: Ad,_as-zvconsequence there
is one term, d, to be evaluated enforcing eq. 14. We rewrite eq. 14 as:

i i / . OUj A X4
[U, + _ _=_0

.9X4 2] ay'

By substituing eqs. 7 and 3 in eq. 15 we obtain one algebraic equation in one
unknown, d, which satisfies eq. 14 in both predictor and corrector steps of the
integration scheme. Any boundary can be.computed following the same idea.
For the moving walls,for example, the boundary conditions prescribe that the pressure
jump and -the pitch have to be preserved-in time. The enforcement of-the eqs 12 and
13-yield:

P+ a,- - X,4) _~ - IP+ SS. = A P
(16)

dy,= ey,

with "P" and "S" denoting pressure and suction sides, respectively, and d, e are defined
by eqs. 10. The second of eqs. 16 can be written as:

{ -u. Od Ox& (OU, oW' odx o
I~ " aX yn a4 &OOftn) 2 p

{u2 un-a Ox-~+ O Oe Ox'r) Ax4)

(17)
with- = 1, 2,3; n = 1, 3 and Od/Ox , Oel/x approximated by finite difference.

The -first ofeqs. 16-and- eq. 17, combined-with eqs. 3, allow ;7d, unknown -at the
pressure side boundary, and- re, unknown at tie suction side boundary, be valuated
satisfying the -boundary- conditions 12.

The-geometry of-the pressure and-suction sides,given in general-form by eqs. 11, are
updated at each time step by-means of-the eqs.

+ 1 - ) = d(y'y', y')-+ 2-18

where the derivatives-d,4 = ey. are expressed-by the-condition of-impermeability of
the wall: the contravariant component-Q2 of the vector Qhas to be zero,-that is:

dy4-= U - U" xay (-n=1,3) (ca=-1,2;3) (19)

In-computing-eq. 19, Od/Oxo are approximated- by-finite differences.
The -other solid o moveable walls are computed in the same -way, once the proper
unknown terms or il, are-detected.

4 Numerical -examples-

The proposed method-has been- tested first of-all -by replicanting the same-numerical
examples of-Refs. [1,2,4]. One-new example is here presented: it-refers te the design
of the blades of~a 3D rotational-subsonic stator.
Figs. 3), 4), show the initial -and-final 3D view, respectively. The-tip and hub-solid
annulus walls are-cylindrical:

with rt1rhz= 1.5.
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with y, - y3 -axial chord.
The design toading is:

AP =.08 "sin

with~~~ ~~ Y3]- t axa cod
r 3 .3

Since Euler equations call transport vorticity, in order to have the development of
passage vortices a viscous velocity profile is simulated at inlet by imposing total tem-
perature constant T o = 1, and a parabolic distribution of total pressure with smallest
value at hub:

,witi, g = .l1(.¢5-- Vr6j), It = 1. - g ' t.

At the exit we prescribe the static pressure: at the hub radius we prescribe pl = .7, at
greater radius the static pressure is computed according to the radial equilibrium.
Figs. 5), 6) show the isoMach lines of the initial and final configuations ofblade to blade
sections at thehub radius, respectevely. Figs. 7)-10) rapresent the final configurations
of intermediate and tip sections.
The constant entropy surfaces coincide with stream surfaces; as it has been pointed out
in Ref. 14], looking at Figs. 11a) and lib) one would expect to see the typical rotation
of such surfaces as consequence of the secondary flows-generated in 3D rotational flow.
Actually, an axial component ofthe vorticity is corrp'tly generated, it does not reveal
itself as airotation of the streamtubes, but rather as a peculiar twisting of the blades:
the 19ading is prescribed as design data and it cannot be decreased as a-consequence
of secondary flows, but the lower is the total pressure (mid density) the higher the
deflection to provide such loading.
Finally, two integral ciecks have been done on the continuity and angular momentum
of the computed flow field: Fig. 12) shows the mass flow computed oin cross sections
along theiblade to blade channel; Fig, 13) compares the angular momentum evaluated
on cross sections along the channel with the corrispomiding torque dut: to the design
loading.

Fig. 6

Fig. 5
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SUMMARY

The application of conventional optimization schemes to aerodynamic design problems leads to inner-outer iterative procedures
that are very costly. In -this paper, an alternative approach is presented based on the i'ea of updating the flow- variable
iterative solutions 'and the design parameter iterative solutions simultaneously. Two schemes basedlon-this idea are applied to
problems of correcting wind tunnel wall interference and-optimizing advanced propeller.designs. The first of these schemes is
applicable to a limited class of two-design-parameter problems with an equality constraint. It requires the-computation of a
single flin solution. The second scheme is suitable- for application to general aerodynamic problems. It requires the
computation of sev rral flow -Solutions in) parallel. In both schem es, the design parameiteis are updated as the iterative flow
solutions evolve. Computations are performed to test-the schemes' efficiency, accuracy, -and- sensitivity to-variations in the
computational paramneters.

SYMBOLS

cl ncremenrting-factdr-for optimization scheme (see Equation (9)]
C2 decrementing factor for optirmization scheme [see-Equation (9))

C positive constant for-chord mnethod (see Equation (7)]
ell power coefficient; also pressure coefficient

Cli d&rerl power coefflicint
D) propeller diameter

unit vector along the-P1 axis
objective function

f constraint-function
-- solutio n of the flow governing equations

1hcomponent of V! relative to rotated coordinate system
h tunnel height
If unit vector along the _laxis with components defined relative to the unrotated-design parameter cosordinate

system
unit vector along tlre-_e1 axis with components defined relative to the rotated design parameter coordinate system

L nusmber ofdesign parameters
4measured mnodel lift- coefficient
LF computed lift coefficient ror-model in-free-air

L, computed lift coefficient-for model in wind tunnel
Af Mach number
N number of-problems solved in parallel by tbe opti-mization scheme
na nunmber of iterations required Cot the convergence of the analysis problem's solution

number of iterations required for-the convergenc- of the optimization problem's solution
P vector of design paramseters

E vtor of design-parameters relative to rotated ceordinate system

P, I componenet of design:parameter vector
E tcomponent of design parameter vector rclati-e to rotated coordinate system

r radial coordinate-
Rt blade tip radius
RE res idual-Eutlidean -norm
RmOZ ma ximumr residual

-17 angle of atttck
O3 U R-3 blade angle at 75% bladi. span

00 urperturbed blade angle distribution
00534 6e,14 which-corresponds to the power coefficier.; Gpo
A14 Mach number correction

Act ar gle of attack correction
f' bI Wde angle dstribution perturbstion

SE in:remental Yector-used-W ~update the-vectorcd*c~smznnparamet-ra
$Pmaz rui~xmum incremental valueIn allowed-in updating-the design parameters

nNi mber of-iterative steps3 at which P is perio4 cally update

*This work wa-suppotted sy -NASA-Lewis -Research -Ceniter~undr -Contract 41.53-24855 and NAS&.Ames- Research- Center
under Conttac:, NAS2-12157. It-was completed w hile the suthor was at Flow Rescarcb-Co.,-Ken t, Washington.
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small positve incremental value used to perturb the design parameters r - -1
9 efficiency

p parameter determining the allowable region in design parameter space for sarceing for the optimum solution
[see Equation (22)

a nca / ,n
a

"

flow iterative solution

Supcrscripts

n iteration number
optimum value

Subscripts

e mesured tunnel condition
F computed free-air condition

f corrected condition
Mf coordinate system rotated-by thie modified scheme
S body-surface

computed tunnel condition
free-stream condition

- rotated coordirate system

!. IN'rRODUCTI0N

Solutions of constrained optimization problems minimize an objective function, E, subject to given constraints. In aerodynamic
applications, the objective- function and-the constraint functions,.J, i=-1, 2, ..., depend-on-the flow field -solution, g. The
optimization schemes presented here are applicable to situations in which the flow governing equations are nonlinear equations
that are solved iteratively.

Conventional -optimization methods- (e.g., the-steepest descent method and the conjugate gradient method) are iterative
procedures that require the- evaluation of the objective function many times before the converged optimum solution- is
determined. Since E and f are dependent on the flow solution, ;,-in addition to the vector of design parameters, P, the flow
governing equation must-be solved each- time-E and , are evaluated. Therefore,-the application of-conventional optimization
schemes to aerodynamic -design problems -(References 1-5) leads-to two-cycle (inner-outer)- iterative procedures. The inner
iterative cycle solves the analysis problem for-i iteratively, while the outer cycle determines the the optimum-P iteratively. An
alternative to Ihe costly conventional optimization approach is the approach-based on the idea of updating the flow-variable
iterative solutions and the design par-,neter iterative solutions simultaneously. Two schemes based on-this idea are presented
here. The first is applicable to a limited class- of problems, while the -second is a general scheme applicable to general
aerodynamic optimization problems. The results of spplying the schemes-to-two different problems are presented. In-the first
problem -wind tunnel wall interference corrections are determined and in the second problem advanced propeller designs are
optimized. Computations are performed-to test the efficiency, accuracy and sensitivity of the schemes to variations in the
computational parameters.

2. APPROACII

In the optimization problems considered here, the optimum design parameter vector, 1", is determined such that

E(P *; ;) =-min E(P; 7)(1)
P

subject-to the constraint

f(P; ) = 0 (2)

with the flow variable vector ; satisfying the flow governing equation

b(;)o= 0 (3)

subject to the boundary condition

B P) = 0 (4)

-t- --------- __ __ _ _



Two optimization schemes are presented here. The first,-scheme 1, is-applicable to a limited-class of two-design-parameter
problems with-an equality constraint. The objective function is-assumed to be of special form-and-the-constraint line is
assumed to be normal-to the P1 axis in design parameter space. The second, scheme II, is applicable to multi-design-parameter
problems with a single equality constraint. Extensions for solving multi-constraint problems and problems ivith inequality
constraints are also presented. Although scheme I is a special scheme, which may be applied only to a- limited -class- of
problems, including-it here serves two purposes. It provides a second eample of a scheme whici updates the design parameters
and the flow variables simultaneously. Moreover, results obtained from applying scheme I to optimization problems provide an
additional set of data for determining the effects of updating the design parameters while the flow solution is developing.

The goal of the optimization cchemes is to determine the values of the design -parameters that minimize the objective function,
E, subject to an equality constraint. A search must therefore be conducted in-the design parameter space P for the optimum
solution, P*. This optimization problem is most conveniently solved in the rotated design-parameter space E, with the PI
coordinate normal to the constraint surface'and the PI coordinates, where I = 2- 3, . . . , L, parallel to the constraint surface.
In the case of scheme I a-rotatiop of the coordinate system is not required, since-both design parameter spaces P and are
equivalent. For fixed values of the components of P, let

1n = O, , 2... (5)

be the iterative solution for the analysis problem, where denotes the solution obtained-by applying the iterative schemi for
solving the flow governing equations once using ;n as an iiitial guess. As for the analysis solution, obtaining the optimization
solution requires the repeated application of Equation (5) to update the flow field. WIile is held fixed in the former case, it
is allowed to vary in the latter.

The vector of design parameters is updated every AN iterations. Therefore,

2n+1 =tn + 6ni(8)

where

- 0,-(n+i)/AN 6 1, 2, 3, .

In tl.. iterative steps-that satisfy the-relation (n+l)/ANi 1, 2, 3, . the-incremental values-for the design parameters are
given by

+,= - [min (C Ip,, 6Pmsz) (7)

6f '+ ir' - 1 6 pm], &L~ l I 2, 3. L (8)

where

.p =-A'_.; -,n)

"pn+1 [c er+, + 1). ,(,n+, - 6) n+!.y (9)

11+ -1 (10)S lAE76e, +~I.U o

The purpose of AV appearing in Equation_(10) is-to determine-the sign of OE/OP_, which in-turn determines the sign of the
new incremental step along-the Pn-direction. The main difference between schemes 1land-I1 isnthe definition of AE

0

The incremental-displacement in the design parameter space introduced so that the constraint may-be satisfied is taken-in the
direction normal to the constraint surface and is determined by the chord method-in Equation (7). The-constant 6 1

'mex sets
an-upp mt erlirton-theinagnitude ofih tis-incremental displacement. The incremental displacement& given-by Equation (8) are
introduced along-the coordinate-axes, whi l are parallel to-the constraint-surface with-the purpose ofred-ucing the value of the
objective-function. The sign- of the incremental correction 6E n where 6n+is the 1tA component of-tb vector 6~O+l, is
chosen to be opposite to that of DE18/0.. The magnitude of the-increment 6B is given by

16 ]+'1 =-c '" I
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with an upper limit given by-Wmx hr >o poheignto alon tis n~dirEcti N arc is anium Ihnthis ase, tw
iterative- solutions _P Ihr cn I'O of the signs og tl'el nd~ ni Aareinwhh i aecmnmum thn-ths lms, c
is set equal to the constant cl, which is greatr than 1. Increasing the magnitude of the step size in this manner accelerates the
approach-toward the point along the E dieecton-at which S 1s-a-minimum. On-the other band, If the signs of 6En'tand

arcld , not in agreenseat," thn-il an-l'9fl on opposite sides of tie-pointoalong the Pdirectiou at which Lie a
m~inimum. In thi case, c: is set equMAt&LCs constant e2 . which-ts-less thaft-1. Decreasing thc magnitude of Lte step size In this
manner-is necessary-for convergence to the point along the !,direction rcA-which E is a minimum.

The updated romponenta of the design parameter vector 211+1 aie-used to calculate the new now iterative solution, ~51
geven by

2.1 Schemne I

This -scheme was- developed for application to a pa.-ticular problems- arising from -a-transonie -wind tunnel wall interference
correction procedure. In this procedure the-free-air flowfield around the model is compted. The design parameters are the
model angle of attack (i. and the free-air Mach number-A Mes so that P(reF. besp). Their optimum values are determined
so that Equation (1) is satisfied with

E = -(fF _ rs) 2 d$ (12)
f M 1 ds

subject to the constraint

f- L1. - Le=0 (13)

where MfFS is the computed Mach number distribution-on the-model surface-in free-air and UTS is the corresponding Mach
number distribution in the wind tunn-e. This is obtained from a-wind tunnel flow computation which is performed prior to the
free-air computation. The integrals in Equation (12) are toke n over the model surface.

In scheme I a single solution given by 4quation (11) is computed. To determine the sign-of ZW5 /81" it is therefore necessary
to use values of-E at different iterative steps. In this scheme AhN= 1 and AE'is defined by

A'=(Bn - E'*')('~ - eus)

where

Eli E (P; )

FRTS ds

llecaues-AE' is evaluated at two-different time steps the sign of Ar-may not always agree with tbat of 8FVIOP". As loag
as the frequency at-whrichsuthis disagreement accur' is below-a certain limit thescheire-converges-to tne correct solution. The
coordinate system- in design -paranmeter space is- not rotated. Therefore, the seiarch-for the minimum olective functions is
conducted along constant P1_ lines. In-general, this3-will-not-lead to-acane determination of-theoptimum-solution, however,
in the particular problem-contsidereli here the constant-P1 lines-are nsearly-prallel to the constraint-curve. The resulting error is
therefore negligible.

2.2 Scheme 11

This-scherne-6 a-general schemec, which does not have the limitations of scheme 1. In addition to the main solution given-by
Irquation (11), this scheme-comnputesi the perturbed solutions ;'' 1= 1, 2,.., L, given-by

-n+1 , "+14)~
91 ~+ (, %4

whsere c is-a. smalzpositive-coisstant-and "i1 -2 . . ., L, are the-set of orthogonal- unit vectors along-the axes of-the
Pn'. P"' IfZ+ -lutiop, (10).AEO, is giveit by

-(...En-+ '!n~ ; -
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While the optimization procedure is most suitably conducted in terms of the transformed parameters -I, 1- 1, 2, . , L, the
flow solution is computed in terms of the physical design parameters P' I = 1, 2,... , L. To express the transformed design
parameters in Equations-(tl) and (14) in terms of the original design parameters, it is necessary to-use the transformation
equation, which relates these two sets of parameters. This equation is

Pn+l -- +- T n-l' .-

where the orthogonal transformation-matrix T4+1 is given by

r4+1 n+1 7n+1 7n+l1- 2 .... L J

The unit vector is normal to the constraint surface at = n and is given by

S7 = VAIn; in) / IVjtn; in), (15)

where an estimate for G", the Ph component of Vf, is given by

Iqn = IA + n- ;in) -j(tn.;+n))/

The Gram-Schmidt otthogonaliza.ion process, which uses a set of b linearly independent vectors to construct a-set of L
orthonormal vectors, is used to construct the unit vectors 7 

1 --, 1 = 2, 3 .... L, along the rotated axes _+lj =2,3,...,
( L. The following equation is used-for this purpose:

7n,+ 1 1= 2,3 . L

where

7n+1 n 7n .ni?n+ (17)= - I k 'k(1

In-the initial-iterative step,-the-vectors- 1 are-given-by F I= e1=1, 2 .... LL, where I 1, 2, ... L, are the set of
orthogonal-unit vectors along the axes of-the coordinate system P1, P2 . ". '-PV While the flow variable vector 3 is updated
each iterative step, the coordinate sXstem in the design parameter space-is- rotated every AN iterations. The unit vectors i ,
lik the vector of design parameters P, are updated only in the iterative steps that satisfy the relation (n+I)/AN = 1, 2, 3, ....

The optimization seheme described-above-requires that L + I iterative problenm be solved in parallel. In addition to the main
solution, L perturbed solutions are computed in-which each ofithe design-parameters in the transformed space _1, E2 , ... P
is perturbed. The computational costs-and-the computer memory requirements are therefore proportional to L + 1. A
modification to this scheme, which requires that only L iterative solutions be obtained, is now introduced. In the modified
procedure, the- perturbation solution associated with the-perturbed design parameter inthe direction of the -P1 axis, normal to
the constraint surface, is not computed. This solution was used in Equation (16) to compute Q", which is-required for the
calculation of the vector 7n+,', which determines-the direction normal to the constraint surface in Equation t5). In-the
absence of this- solution, a new- procedure for rotating- the design parameter space must-be defined. The procedure is first
explained for the-case of a two-design-parameter problem, and then it is extended to the general multi-design-parameter
problem.

Figure ! shows the design parameter space for a two-design-parameter problem. In the figure, the cconstraint function values AS,

fl', J2 are defined as follows:

Io = , , ; in)

= j2+ + i)

In the modified procedure, the-chord- method, used in Equation (7) to satisfy the constraint condition, is used to rotate the

"Op = tsn i. (18)



isused to rotate the coordinate system, where the subscript M indicates that the modified scheme is used. The angle 60+
1 is

(+1

now compared to the corresponding rotation angle 60 n x used in the original scheme and given by

This comparison shows that the term n -, in the original scheme is replaced by /1C in the modified scheme. Therefore, the
modified scheme may be viewed as the-original scheme with the exception that the exact value-for 7, is replaced by an
approximate estimate in which the gradient off in the direction of the L! axis, Q1, is not calculated but is estimated using the
same proportionality constant used in the chord method of Equation (7). Thus,

(20)

This is applicable for both the two-design-parameter problem and the general multi-design-parameter problem.

In the optimization scheme developed here, corrective increments are applied to the-design parameter-solutions every few
iterations of updating the flow solutions. For convergence to occur, the signs of the increments must be-chosen correctly to
allow the iteratie solution to approach the desired solution. The magnitudes of the increments are dependent on the
computational cc. *ants c1, c-, and C. Because the design parameters are updated frequently during the iterative process, we
are not concerned with determiniing the incremental step sizes that lead t.; the highest short-term convergence rate. In fact, this
may be difficult to define, slnce the flow variable solutions are continuously changing during the iterative process. Our aim is
to achieve-design parameter-convergence over a long term defined by the number of iterations required for the-flow-solution
convergence. A wide range of incremental step sizes should produce-the desired -convergence properties-over many iterations,
even though convergence properties over a-few iterations may differ. These comments apply-to both of the schemes described
above for determining the design- parameter space rotation. The direct procedure for determining-the design parameter space
rotation in-the original scheme is replaced by an-iterative procedure-in the modified scheme. Since this-rotation is updated
frequently during the iterative process, this -replacement should have no substantial effect on the overall -convergence-of the
solution.

A potential problem exists when the modified-scheme is used- for rotating the design parameter axes. This problem is-now
discussed, then suggestions for overcoming it are presented.

In the first AN - I iterative steps of solving the problem, the coordinate system-in the design parameter space coincides with
the original unrotated design parameter space-P, P2 .... I PL. At the ANA iterative step, a new rotated coordinate system is
determined. When Equation (16)-for-determining (j

' is used, we are guaranteed that the vector 7-j ponts in the direction

in which the constraint function increases. Consequently, the useof Equation (7) will cause-the iterative solution-to approach
the constraint surface. When Equation (16) is-replaced by Equation (20) for determining G ' 1 , there is a possibility that the
computed-vector -7INwill point in-the direction'in which the constraint function decreases. In this case, the adsumption that C
is positive is wrong, and-using-it will cause the solution-to diverge. This occurs if the vector-121 is nearly in the direction of

That is, if the quantity

is-close to unity. The probability of this -occurring- is- approximately I4 in a two-design-parameter problem and -is reduced

further as the number of design parameters increases. There are-two suggested approaches for overcoming this problem. In the
first approach, the initial few iterations are performed using the original scheme for determining GQby Equation (16)-in order
to determine the correct initial directions for the P, axis. This may then be updated using the modified scheme, Equation (20),
in the-rest of the computation. Realizing that the probability for the potential problem to occur is small, the second approach
uses the modified scheme from the beginning of-the computation. If divergence does occur, then the-constraint function is
redefined to be equal to the negative of the original constraint function, and the problem is solved again.

2.3 Extension of Scheme 1f

Scheme II is applicable to optimization problems with a single equality constraint. However, this scheme may be extended tW
more general -problems such as multiple constraint problems and problems with-inequality constraints. These eXtensions are
now briefly presented.

In the case of multiple constraints, the set of equations,

fk(P;) = O, k= 1, 2 .... K

replaces Equation (2), where K is the numbet of constraints. For this p, )blem, Equation (7) is replaced-by
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n, -fmin (CIJ 1, 6Pmar))I= 1, 2,.. K
fi

Equation (8) is applied for values of I given by I K-N, K+2,..., L and the unit vectors . are given by

Vf,(p, ; n) / 1Vf, (Zn ; In), ' , = I

n+1 llii+ 1 .. 3

7
n+

1 / 17 
+11 , 1= K+I,K+2,... L

where

-- :t+i ( "r+l . +l -+-,2,3,...,K

Rn+i = vfl (2n ; In)

and 11 was defined in Equation (17).

In the case of an unconstrained problem, the problem is solved in the original, unrcated design parameter space. In this case
Equation (7) is not used and Equation (8) is applied for I values given by I = 1, 2, . . . , L.

In the case of a problem with ii.equality constraints, the solution procedure at a given iterative step is equivalent-to that of an
unconstrained -problem, if none of-the constraints-are effective, and it is equivalent-to that of a problem with Ke equality
constraints, if Keof the constraints are effective. For the problem- with inequality constraints,- Equation (2) is replbced by

fk (P -, L ,k =1, 2, .. ., K

At the iterative step n + 1, the k constraint is effective if either of the following conditions is satisfied:

where 6 is a small positive number, or

!kU2;)-<$ OE(n ; In)<

Otherwise it is not-effective.

3.0 RESUT

The optimization -procedures -described above were applied to wind tunnel wall interference- problems and to propeller design
problems. The computations were performed on the Cray X-MP-computer. The results of these computations are presented
below.

3.1 Wind Tunnel Wall Interference Corrections

References 6 and 7 presenta wall- interference correction procedure which-is divided into two main steps. In the first step the
flow is-computed around the model in the wind-tunnel subject to measured boundary conditions at the-tunnel walls. The
model angle of attack, CT, that causes the computed-model lift, LT, to match the measured lift, L,,-is determined-by the
chord method. The Macl number distribution on the model surface, AITs, is also determined in this step. In the second step,
which is formlated-as an optimization problem,the flow is computed around the model in free air. The design parameters P
and P2 are-the model-angle-of attack, c

F' and-the-free stream-Mach number, M., respectively. They are detemined ruch
that the objective function-given by Equation (12) is minimized subject to the constraint given by Equation (13). The-Mach
number correction, AM, amd-the angle of attack correction, Ac, are given-by

AAI= f.F - M 5 ;-Ac = OF - aT

nWir , e i' (ttack arc then-found from the relations

AMf '4Mese + AM; Ott or OC+ Act
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The flow was assumed to be governed by the Euler equations. The flow solver used was based on a finite voluire discretization.
A multigrid strategy togethkr with a multistage time-stepping schem- were used to advance the flow solution to a steady state
as rapdly as ptssible. Details of the dissipative terms, the multistage scheme and the multigrid method are given in References
8.10. Some results of applying the optimization procedures to the wall interference problem in References 6 and 7 are presented
below.

The correction procedure was applied to a wing/body combination consisting of an ONERA M6 wing, with-a wing span and
maximum chord of 2.4 and 0.6737 unit lengths, respectively, mounted on a cylindrical body of a 0.2-uuit-length radius. The
model-was assumed to be-tested in an open jet with zero pressure.perturbations along its boundaries. The tunnel height and
width considered were 2.0 and 4.0 unit lengths, respectively. The computational domain consisted of half the flow field by
including the plane-of symmetry as one of its boundaries. The computational parameters 6P2, c1. c2, C, and 

6
Pmaz were

assigned the values 0.005, 1.2, 0.0, 0.3, and 0.2 respectively. The initial guess for the flow solut.i a was set equal to free-stream
conditions. A 72x24x12 mesh was used for the tunnel computation, while a 72x32x12 mesh was -used for the free-air
computation. The free-air mesh and the tunnelnmesh were identical in a region bounded by the upper and lower tunnel-walls
and the wing tip. Beyond the wing tip, the meshes did not coincide. The experimental conditions were given by M.C = 0.84
and Le = 0.20.

In the first step of the correction procedure, the tunnel flow is computed and the angle of attack, isT, is determined. It was
found to be given by crT = 2.777". In the second-step of the c-rstion procedure, the free-air flow is computed and the
parameters P and P2 are determined by using scheme I, where

P, 
= 

orp and P2 
= 
M,,p .

Their values were found to be given by or = 2.468" and-M F = 0.833. The angle-of-attack and Mach number corrections are,
therefore, given by An = -0.309" and AM = -0.007. Figure 2 shows the iterative histories for ap and LF, while the iterative
history for Af-, is shown in Figure 3. Figure 4 compares Rmaz for the second step in the correction procedure, in which ;-is
updated in addition-to aF and-AfooFO to Rmaz for the regular analysis solution, in which only ; is updated while a. and Mssp
are held fixed. The figure indicates-that the convergence rates for the analysis and-the correction schemes are comparable. The
lugh-frequency oscillations apparent in the curve associated with the correction procedure are due- to the introduction of
perturbations in-the flow field as Afor is updated. The computational requirements for the free-air correction scheme and the
analysis scheme are essentially the same. The first of thes'computations required 153 cpu seconds, while the-second required
150 cpu seconds. For the uncorrected free-Ar flow-(Mp = 0.84, oF = 2.777"), the values of LF. and E are given by-L F =
0.235, E = 5.2x10, 6 . 

For the corrected-free-air flow ('f, = 0.833, or = 2.468"), these-values are given-by L = 0.200, E =
6.92x10 7. The corrections therefore achieved the goal of satisfying the-lift constraint and of reducing the value of the objective
function.

Scheme I was applied to different three-dimensional configurations with success. lowever, problems developed when applying it
to two-dimensional configurations, as the supersonic bubble size increased beyond a certain limit. To demonstrate this problem
the procedure is now applied-to a NACA 0012 airfoil tested in an open jet of height h = 3.6. The airfoil is assumed to have a
chord of-unit length and to be located in th5 middle between the upper and lower.boundaries. A 72x64 mcsh is used for the
tunnel simulation and a 72x96 mesh is used for- the free-air-simulation. The airfoil lift corfficiont and the tunnel Mach number
are given by Le = 0.35 and Af ,e = 0.7.

In the first-step of the correction procedure, the-wind tunnel flow is computed and the angle of attack aT is determined. In the
second step of the correction procedure, the free-air flow is computed and the parameters otF and Ms p are determined. The
initial iterative values of OF and Afop are chosen to be equal to-aT and Mc, respectively. The initialflow field solution is
set equal to free-stream conditions. The parameters 6A, ci, c2, CbPmaz, AN, and c are given, respectively, by 0.005, 12,
0.6, 0.3, 0.2, 4, and I0s.A

The iterative- history of AIoF resulting from-using scheme I is shownin-Figure 5a. An-initial stage of about 60 iterative steps
of rapid variations is observed in this figure. The solution beyond this point seems to be essentially converged. Ilowever, at
approximately the 801& and -the 2 301A iterative steps, a rapid departure from the apparently- converged -solution takes place.
Within about 25 iterative steps in both cases, an essentially converged solution is observed- again. We-have conducted many
computations, using scheme 1, for different test conditions. The appearance of local spike-shaped deviations is a common
feature among these solutions. lowever, the size of these spikes and the frequency of their occurrence depend on the particular
problem being solved. The iterative history of H.5 F resulting from-using scheme 1I is shown in Figure 5b. In this figure, an
initial-stage of about 150 iterative steps is identified in which relatively rapid variations-in the value of .A1F. take place. At
the end of this stage, the value-of/t/ £F is wentially converged. Only minor variations-are observed in the value of M
beyond-the initial stage. In scheme 11, the incremental value 6P2 is determined by comparing two objective- functions at the
same time step. In schemel!, this-value is detemined by comparing two objective functions at different-time steps. Scheme I
fuctmns properly as long as-the dependence of the objectiv, function on the parameter M f p is stronger than its dependenceon
time. As its dependence on time-becomes comparable or stronger than its dependence on- 3fp, the computed 6P2 values no
longer lead to convergence to the optimum solution. The local divergence shown in Figure 5a is due to-the solution's weak
dependence on " t... as the values of-6P 2 become small. As-the-local divergence occurs, the value of 6P2 ;ncrcses, causing a
stronger dependence-on MeoF -and causing reconvergence. In other words, the process thattakes place at the-spikes is self-
stabilizing. It is, therefore, possible to use scheme I to determine a solution-by simply ignoring the local &olutions '-tmthe spikes.
lowever, as the supersonic region -increases- n-size, the size ol the spikes-also inereases. Eventuaiiy,-it bcomes no ionger
possibie to- use scheme I for determining valid solutions. Figure 5c shows the iterative history- of Mfo£ resulting-from using
scheme I -in tba same problem solved above, but with -a value of-MAwe-of 0.75 rather than 0.7. It is apparent that a converged
solution in this figure is no longer identifiable, Therefore, scheme I is no longer useful in determining a solation
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Figure 0 shows the history for the maxim.m rezdual, Rmax, for the three cases corresponding to Figure 5. While the effect of
the spikes is seen to be local and-limited to a few time step; in Figure 5a, the recovery to the prespike level is seen-to take a
relatively longer time interval-in the case of the maximum residual, as indicated in Figure 6a, which shows that, beyond 300
time steps, the maximum residual oscillates about-a fixed value. We have continued the computation to 800 time steps, and
the oscillatory behavior was found to continue. This behavior is due to the same process that leads to the local-divergence
observed above. As indicated above, at certain stages of the computation, the signs and values of 6P2 are no longer chosen in a
manner that causes-M F to approach its optimum value. If conditions ate such that the sign of 6P2 remains unchanged for a
large number of steps, then the local -divergence observed above will occur. On the other hand, if the positive and negative
signs of 6P2 are reasonably well balanced, then-the oscillatory behavior observed in Figure 6a occurs. It should be noted that,
even though the maximum residual may no longer converge,-the level at which this occurs in-Figure-6a does indicate that, for
practical purposes, the solution is converged. The-uncertainty caused by scheme I in this particular problem should be of no
practical concern.

Table I compares the accuracy of the schemes I and II. The exact solution-was obtained by solving a series of problems with
different values of MooF. In each problem the value of op, which satisfies the lift constraint, was determined- by the chord
method. In each of these problems, the objective function was computed. The exact solution is the solution that results in the
minimum value for the objective function. It does appear-from the table that the results obtained by each of the two schemes
are accurate and the errors are within acceptable levels.

Table 1. A Comparison of the Accuracy of the Optimization Schemes

exact scheme I scheme II

Ac -1.6000" -1.5981" -1.5999"
AM -0.0002 -0.0065 -0.0062
error in Act 0.0 % 0.1% 0.0 %
error in-AM 0.0-% - 4.8% 0.0 %
E 8.97x 0 

4  8.98xi0 
4  8.97xi0 

4

To compare the efficiency and relative costs of the two schemes, it is necessar, to set a convergence criterion. The convergence
criterion used here assumes-that convergence is attained when Rmar = 10"". At this value of the maximum -residual, it is
found that the values of An, AM, and -R are all essentially converged. -Based on this convergence criterion, Table 2 compares
the-number of iterations and the computational time required for convergence-for the different schemes and for a- rgular
analysis solution. It is clear from- the table that updating the angle of attack and the Mach number in addition to the flow
variables results in reduced convergence rates relative to that of an analysis problem in which only the flow variables are
updated. The table also indicates that-the computational time per-iteration required for scheme !1 is double that of scheme I.
This-is-due to the requirement of-computing two solutions in parallel-when scheme II is used. While scheme I updates a F and
MAp. each iterative-step, scheme II, through the parameter AN, allows-the user-to specify the frequency of updating-these
parameters. In-the present computations, these parameters were updated every four iterative steps. We did not attempt to
determine the value of AN that maximizes the rate of convergence. Therefore, there is a good possibility that the efficiency-of
scheme 11 can be improved over that indicated.

Table 2. A Comparison of the Efficiency of the Optimization Schemes

analysis scheme I scheme II-

Number of
Iterations 92 174 268
CPU Seconds 23 44 137

"Ihe above computations wer,. performed-for a case in which-scheme I-functions properly to allow comparison-between -that
scheme and scheme II in the lunge-in which it is-valid. Scheme-I -was applied successfully to cases-at-highlMach numbf -s
(Reference 6) in the range where scheme-I cannot be used. An example of these cases is defined by the test conditions h = 43
Me = 0.8 and Le = 0,35. A 72x80 mesh was used for-the tunnel simulation and a 72x112 mesh was used for the ftee-,r
simulation. The first step of the correction procedure determined an-coT value of 2.82960. Figure 7 shows the Iterative histories
for Mo F, cF , LT and Rmoz in the second-step of the correction procedure. Thisstep determined an cap value of 1.6488' and
an ff., value of 0.7871. A comparison between the-solution obtained in the-second step and a regular analysis solution
indicates that 248 iterations and 143 cpu seconds are -required for the present -solution to -achieve convergence, while 60
iterations and -19 cpu seconds are required for the analysis solution to achieve convergence. The correction results are given by

Ac = -13808', AM -0.0129, EM-3.54 x 10
4

These values are identical to the exact solution. Figure 8 presents a comparison-betwoen the-pressure-on the airfoil surface for
.d..:.a:, ..ssssnl,_l =fl 8.ca.. -. 2.8296), the free-air flow ak the uncorrected conditions (Mo F = 0.8, OF, = 2.8296')

asd the free-air-flow at the corrected conditions (M0 r = 0.7871, op. = 1.6488"). As indicated-from the figure, the cuseri.v
procedure-does accomplish-the goal of determining free-air corrected conditions (a., M F) withaeredynamicproseztes
nearlymatching the corresponding properties for the-tunnel conditions (c, M--). The value of-E' i redticed from 384.38 x
104 -for the free-a-r flow at the uncorrec.ed conditions to 3.54 x 104 for the free-air flow at the corrected conditions.
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Scheme I was applied in References 11 and 12 to the problem of wall interference correction. There, however, the transonic
small disturbance equation was assumed to be the flow governing equation and the solution was obtained by successive line
overrelaxation.

3.2 Propeller Design

The optimization procedure 11 described above, combined with the Euler analysis code developed by Yamamoto et al.
(Reference-13), was used to find the twist distribution for the blades of the eight-bladed SR-3 propeller with the objective of
maximizing its efficiency under the constraint of a desired power coefficient given by Cpo = 1.7. The computations were
performed for a free-stream Mach- number of 0.8 and an advance ratio of3.06. We let 1003/4 be the blade angle at the 75%
blade span corresponding to the desired power coefficient, and we took the blade angle distribution, 0 0(r), corresponding to this
propeller as our-base configuration. A perturbation, Pl(r), to the blade twist- distribution, flo(r), was computed so that the
propeller efficiency is maximized subject to the power constraint. The perturbation twist distribution is given by

0(r)=P+P, r- R/2 2P3  ,- R/2 2 (21)

where P1 , P2 , and -P3 are the components of the vector of design parametefs P and R is the propeller radius.
Experimentation with the propeller analysis code indicated that the flow iterative solution diverges when the blade tip angle
exceeds a certain limit. To exclude thi region leading-to-the divergence from. our search-in the design parameter space, the
following redefinition of the objective function was introduced:

E= -;) + mar {0.0, 0.1 + -p (22)

where p determines the allowable search region. As the value-of p increases, the allowable search region also increases. The
value of-p-was taken to be equal to 5.0 unless otherwise specified.

The mesh used in the following computations consists of 45 points in the axial direction, 21 points in the radial direction, and
1! points between adjacent-blades in the circumferential direction. Computations are initialized by the SR-3 flow solution,
which corresponds to a 54.9' angle at the 75% blade span. This initial solution was intentionally chosen not to-be-a close
approximation of the desired solution. In-all the following computations, the modified coordinate rotation scheme, which
determines G1 by Equation (20) instead of Equation (10), is used unless otherwise specified. Also, unless otherwise specified,
the initial iterative guesses for the design parameters are set equal to zero and the computational parameters cl, c2 , C, 6bI,
6P, 6Pmz, , and AN are given, respectively, by L.2,-0., 3.0, 0.5, 0.5, 1.0, 0.0001, and 40.

The optimization procedure was-applied to two-design.parameter problems and to three-design-parameter problems. For the
two-dsign.parameter computations, the- values of Pa in Equations (21) and (22) are set equal to zero. Results for the two-
design-psrameter problem are presented, followed by those for the three-design-parameter problem. For the initial flow
solution, which corresponds to a 03/4 vwlue of 54.9, .he value of-Cp was 1.1. Also the value of 003/4 was determined to be
58.067. The design parameters predicted by the optimization scheme are given by P* = -2.83, P_* - 5.51. The predicted
solution does satisfy the power constraint. The value of Cp corresponding to this solution is-1.6999. The objective function, E,
was reduced from-the value -0.839 in the case of the original design, with Px = P2 

= 
0.0, to the value -0.908 in the e.se of

the optimized d.ign. The value of the efficiency was increased from 0.839 for-the original design to 0.910-for the optimized
design.

The computed value of efficiency, which corresponds- to the optimized design, is approximately 5% higher than expected.
Towards the end of this study it was discovered-that an approximate formulation used in the analysis code to-integrate the
aerodynamic forces near th.- blade base -was the cause of this overprediction. The main portion of the results presented here was
obtained using the approximate- formulation for-computing the- perfo.mance. rhese results ake presented first. They are then
followed by results obtamndby asing an accurate formulation for computing the performance. While there may be no interest
in the first set of solutions for the purpose of imuroving the propeller design, these results are valid for the purpose of testing
the optimization scheme. In this ca e, -r-is v~ewed as an objective function without attaching a physical meaning to it. In
the second set of results it we necessary to use-an accurate formulatior, for computing the performance in order to show the
required blade shape modification for improved performance and the corresponding increase in performance obtained by
optimization.

The iterative-histories of the design parameters are shown in Figure 9, while the iterative histories of the power and efficiency
are shown in Figure 10. From these figures two distinct sta.es in-the convergence procesu of the solution-may be identified, In
the first stage, relatively rapid changes in the values of P, Cp and q tccur-as they approach the converged values-of th.
solutions. At the-end-of this stage, these parameters are close to their-final values. In the second stage, minor adjustmeents
take place as the parameter solutions converge to their final-values.

The residual, RE, is a measure of the convergence of the flow-field solution. Figure 11 compares the residual history for the
design problem, in which is updated in addition to P, to the residual history-for the regular-analysis probleri, in which i only
is-updated while P is-held hixed. lie ligure- indicates -tia. suodllying the-propeiler gometry in the ieaign Plr'em s U
iterative solutions for the flow variables are updated does-not n.atively affect the rate of convergence of the flow Geld solution
is comparison to the analysis problem. In fact, the following-resuls otour computations show that-the eonvergence of the flow
field solution is accelerated when -the design parameters are updated to satisfy the power constraint or to satisfy the the
conditions of the optimization p:oblem. For-a regular analysis problem with P set equal-to P, the number of-iterations
required for convergence was 4710. lereafter, conveigence-is assumeo'to-w achieved-when the magnitude of the-residu , RE,
is reduced to the value of 10"7. For-a constrained-solution in which the second component of the design parameter vector, /'2,
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was set equal to the value P, while the first component was updated throughout the iterative process so that the constraint Cp
= Cpo would be satisfied, convergence was attained after 4040 iterative steps, indicating an increased convergence rate relative
to the regular analysis problem. For the design problem in which both-P and P2 were updated in a manner that allows the
constraint Cp = Cpo to be satisfied and the objective function E to be minimized, the number of iterative steps required for
convergence was further reduced to 3250.

On the average, 0.972 cpu second was required for the iterative step in the design problem, while 0.403 cpu second was required
for the iterative step in the analysis-problem. Therefore, the average design iterative step required slightly more than double
the cpu requirements-for the analysis iterative step, In the design problem, two analysis problems are solved in parallel. The
additional cpu requirement for the design problem is mainly due to generating a new computational mesh whenever the design
parameters are updated.

For a regular analysis problem, the computational mesh is generated only one time at the beginning of the computation. For a
design problem, however, it-is necessary to regenerate the computational mesh whenever the design parameters are updated. In
the present computations, this was done-once every 40 iterative steps. The cost oftmesh generation relative to-the cost of
solving the- flow equations was acceptably low. As the value of AN decreases, however, a point may be reached at which the
cost ofrgenerating the mesh becomes excessively high, and it may represent a substantial fraction of the totfil computational
cost. In this case, a possible alternative to regenerating new meshes, whenever the design parameters are updated,-is the use of
approximate meshes that are generated by linearly combining L+l reference meshes. The reference meshes may-be updated
every J AA' iterative steps, whee J > 1. The need for making this approximation-does not arise here, as the propeller analysis
code used here has relatively slow convergence properties and, therefore, the appropriate AN value is ,-latively large. However,
the use of accelerating schemes, such as the multigrid scheme, would-allow the AN value to be sufficiently low to require the
use of the mesh appoximation discussed above.

We have performed a single computation using the exact-formulation for calculating I 1, as given by Equation (15), with G,
computed-by Equation (16). This formulation requires solving L+1 problems in parallel instead of L problems, in the Case of
the approximate formulation given by Equation (20). The average iterative step for this computation required 1.474 cpu
second. The number of iterations required for convergence was 3425. Comparing these values to the corresponding values for
the approximate formulation indicates that there is a strong advantage in using the approximate formulation- over the exact
formulation.

To verify that the computed solution is- indeed the optimum solution, solutions were computed that were slightly perturbed
from the optimum predicted solutions but that satisfied the power constraint, Table 3 compares the values of-the objective
function for the solution predicted by the optimization scheme,-shown in -the first row, to-those for the perturbed solutions,
shown in the second-and third rows. It is apparent from the table-that perturbing the design parameters causes the value of
the objective- function to increase. Therefore, the design parameters predicted by the optimization scheme do indeed minimize
the value of the objective function.

Table 3. The Objective Function at the Optimum Solution and Perturbed
Solutions for the Two-Design-Parameter Problem

P, P2  E

-2.83 5.51 -0.90773
-2.73 5.31 -0.90730
-2.93 5.71 -0.90728

The sensitivity of the-scheme's convergence to the initial iterative guesses of the solution and to the computational parameters
was tested-by recomputing the problem defined above-with perturbed initial conditions and computational parameters. Table 4
shows the-number or iterative steps, n° , required for convergence when different-values are used for the initial itorative solutions
and the computational-parameters. It is clear from the table that the convergence properties of the scheme are weakly sensitive
to the-values of the initial conditions and the computational parameters. Needless to say, there is an optimum set of values for
these-parameters that maximizes the convergence-rate of the scheme for a given problem. However, within a relatively wide
range of these parameter -values, good convergence is achieved. This is due to the frequent updating of the design-parameters in
the course of solving the problem. The cpu requirement for the average iterative step is -approximately thlq stme for all the
cases solved, except-for the case in-which -AN =25. The cpu requirement for the average iterativestep in thia case is given by
1.078 seconds, in comparison to approximately-0.972 second fur the-other-cases. This is due to the increased-frequency of
generating-the computational -mesh in the case with AN = MS. Figures 12 through-14 show the iterativz histo..es for-PI., P2,

and RE for the case in which-the initial iterative-guesses for-the design parameters, Pl and/P2, were perturbed. Among
all ctu perturbed computati6ns, the rate ofcouvergence for this case was affected the most.
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Table 4. Effect of Perturbing the Initial Conditions and the Computational
Parameters on the Scheme's Convergence
for the Two-Design Parameter Problem

1-0 P20 AN C el c2nu

0.0 o.0 40 3.0 1.2 0.6 3250
3.0 -5.0 40 3.0 1.2- 0.6 3690
0.0 0.0 25 3.0 1.2 0.6 3376
0.0 0.0 40 4.5 1.2 0.6 3252
0.0 0.0 40 6.0 1.2 0.6 3250
0.0 0.0 40 3.0 1.5 0.6 3333
0.0 0.0 40 3.0 1.2 0.4 3120
0.0 0.0 40 3.0 1.5 0;4 3281

I he computations performed above for the two-design-parameter problem were performed with a value of 5.0 for p. To
perform computations that allow both parabolic and linear modifications to the blade angle distributions, it was necessary to
reduce the value of p to 4.0. The three-design-parameter optimization computations were solveA using this value for p. The
main two-design.parameter computation was also repeated -using this value for p to allow a comparison -between the two-
design-parameter and-the three-design.parameter results. The optimum values of the design perameters-for the two-design-
parameter problem with p = 4.0 were found to be given by P! = -235" and -P - 4 56. The value of Cp corresponding to
this solution is 1.6999. The objective function E was reduced firom the value -0.39 in-the case of the original design, with P
- P2 

= 0.0, to the %alie -0897 in the case of the optimized design. The value of 71 was incretsed from 0.839 for the original
design to 0.900 for the optimized design. As expected, the magnitudes of both E and 9 deteririned with p = 4.0 are less than
those determined with is = 5.0. As the value of ii decreases, the restriction on the allow.sble search region in the design
parameter space increases. In the two-design-parameter problem, 3235 iterative step -were required for convergence. The clu
requirement per iterative-step-was 0.072-second. The optimum values of the design parameters for the three-design-parameter
problem with p= 4.0 were found to be P* = -2.77",-/. = 4.50, and P* = -1.20". The corresponding values of Cip, E, and-9
are givei by 1.6999, -0.900,-and 0.905, respectively, idlicating a superior design to that achieved by using only two-design
parameters. The-number of iterative steps required for convergence was 3228, while the cpu-requirement per-iterative stepw.as
1.459 seconds. Tht iterative histories for-P, P2 , P3, q/, Cp an-i RE are shown in Figures-15 through-17.

lo verify the accuracy of the computed solution, several -solutions -were- computed that were slightly perturbed f-mo the
optimum-predicted solution but that satisfied-the power constraint. Table 5 compares the values of the objective function for
the solution predicted by the optimizatio, scheme, shown in-the first row, to-those for the-perturbed solutions shown in the
following rows. It is apparent from the table that perturbing the design-parameters causes the value of the objective function to
increase. Therefire, the design parameters predicted-by the optimization scheme do indeed-minim .e the-value of the objective
function.

Table 5. The Objective Function at the Optimum Solution and-Perturbed
Solutions for the Three-Design-Parameter Problem

S P, P, PAR

-2.77 4.50 -120 -0.90026
-2.87 4.50 -145 -090011
-2.87 4.69 -1.20 -0.89986S-2.67 4.50 -0.93 -0.90012
-2.67 C.30 -I.20 -0.89983

Clomputations were performed using the accurate formulation for computing the propeller performance. In-these computations
it was found that r-responds-to changes-in the design parameters at an iterativeiy-much slowerzrate than that associated with
the first set of computations. For tht reason it. was nrcessary to redt.o-the value of-c to 0.98. All other computational
pardmeters were-set equal to their stme values used-in the fiist-st of computations. In- this set-of-computations, it was
determined-that 003/4 = 57,648% The value of Cp for the initial flow solution, which correspcnds to a 03/4 value o154.9",
was 1.2. Ily-optimizing-the blade shape for the two-design-parameter problem, the-value of-the efficieny was increased from
).8229-for the original design to 0.8233-for the optimized design. For~e regular analysis-problem- with P set equal-to P'the

number of iterations required for convergence was 4320. A comparison of :his number with the number of iterations required to
olve the optimization problem, 3260, shows that-the cost of solving the optLmizatiori problem is approximately twice the Zost

of solving a regular analysis problem.

In the, computations-presented above, the effect of varying the-linear-term of Equation (21) on the propeller efficiency was
investigated. To investigate the-effect of varying the quadratic-term in Equation (21) on the propeller efficiency, a computation
was pe'formed in which P3 -was allowed to vary while P, was set equal to zero. In this case, the design parameters predicted
by the optimization scheme were given-by Pl = -0.79', P' = -2.07. The value of Cp-corraponding to this solution was
11000, and-the- vaue-of i-was-0.82549. The number or ltetatmons-require -tor -convergence-was 3580. A- comparison of se
values of I for the two cases in-which (P , P2) and (Pr, P!) were the design parameters shows that the introduction of a
quadratic- perturbation to-the twist distribution-is more effec ive In increasing the efficiency than- the introduction of a linear
perturbation.

C
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Finally, the optimum values of the design parameters for the three-design-parameter problem were found to be P* = -3.34%
P.2 

= 
3.92, and P3 

= -3.23. The corresponding values of-Cp and I-are given by 1.7000 and 0.83291, respectively. It is
apparent that using a combination of linearand quadratic perturbations in the blade angle distribution is much more effective
for improving the efficiency than using only one of these distributions. Relative to the original SR-3 dpsign, using both
perturbed distributions increased the propeller-efficiency by 0.0100. This is compared to a value of 0.0026 for the quadratic
distribution alone and a value of 0.0004 for the linear distribution alone. The number of iterative steps required for
convergence was 4380 in comparison to-4460 for the ti.gular analysis problem.

The iterative histories for P, il, Cp, und RE in the second set of computations, not presented here, are similar to those of the
first set of computations (Figures 9 through 17), and may be found in Reference 14.

Figure 18 compares the optimum-blade angle perturbations-from -the SR-3 baseline design-predicted- fo the cases of-linear,
quadratic, and combined lnear-and quadratic shape functions. Curve C, which gives the blade angle perturbation distribution
for maxinum improvement in efficiency,.shows that the efficiency of the SR-3 propeller can be improved by reducing the blade
angle distribution both at the hub and-at the tip. This explains the observed weak sensitivity of the propeller efficiency to linear
variations in the blade angle distribution. The use of a linear shape function allows an increase in the blade angle at either the
tip or the hub positions and a-dmrase in the blade angle at the other position. Therefore, the positive effect on efficiency
resulting from the perturbed blade angle distribution at one of these positions tends to cancel the negative effect resulting from
the perturbed blade angle distribution at the other position leading to the apparent insensitivity of the efficiency to liner
variations in the blade angle distribution. The maximum improvement in efficiency obtained here resulted from the use of
linear and quadratic shape functions. Further improvement may be obtained by using other shape functions.

3.3 Efficiency of Optimization Schemes

Schemes I and 11 were applied in this paper and in References 11 and 12 to wall interference correction problems (WIC) and to
propeller design problems (PD). In these applications both the transonic small disturbance (TSD) equation and the ruler
equations were assured3 to-be the flow governing equations. The TSD equation was solved by successive line overrelaxation
(SLOR), while the Eul-r equations were solved by either method A, which is described in References 8-10 or by-method B which
is described in-Reference 13. One-, two., and three-design-parameter problems were solved.

To compare the efficiency of different optimization schemes it-is convenient to define the parameter v, where

=Aq , A=-

and

n
o

lle:e N-is-the- number of problems solved in parallel, n
o 

is the number of iterations required for convergence, when solving the
optimization problem, and n. is the corresponding number of iterations required-for convergence, when solving the-analysis
problem. In the definition of A the-number of-problems, NV, is-normalized by the number-of- design parameters, L. The
parameter a is a measure-or the effect of perturbiug the design parameters, as the iterative flow -solution evolves, on the
convergence of the flow solution. The following table-compares the parameters v, and a for the different problems solved in
this paper-and in References 11 and 12. The first row gives results of unconstrained single-design.parameter problems from
Reference 11, and the second row presents results from Reference 12.

Table 6. Efficiency of Solving Optimization Problems

Governing Method of
Problem Equations Solution Scheme L N o 11I

WIC 'TSD I SLOR I 1 1 0.94.1 0.0-1.1
WIG TS D SLO. 1 2 1 0.9 0.5
WIC Euler A 1 2 1 1.0-1.9 0.5-1.0
WIC Euler A 11 2 2 2.9-3.7 2.9-3.7
PD Euler B 1 2 2 0.708 0;7.0.8
PD Euler B I 2 3 0.7 1.1
PD Euler B 1! 3 3 0.7-1.0 0.7-1.0

4.0 CONCLSIONS

In this paper, an approach- based-on updating the flow variables and the design parameterssimuitancousiy- wo px.uiwl. T.I-
approach- is applicable to a.rodynamic optimization probkmns in which the-flow governing equations are-nonlinear equations
that are solved iterativeiy. Two schemes based on-this approcih wese presented. The first, scheme I, is a special scheme, which
may be applied only-to a limited-class-ofproblems. Under those conditions for-which scheme-I is applicable, it hrs advantages
of higher effiwiency and less memory requirements in comparison to the second sch-me, II.
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Scheme-Il is a general scheme. It was applied to two. and three-design-parameter problems with a single equality constraint.
However, extensions of this scheme applicable to optimization problems with multiple equality and-inequality constraints were
presented. The results show that the scheme is highly accurate in determining the solution of constrained optimization
problems. The cost of solving the optimization problemspresented here was-within the range (0.7k - 3.7L)-tirnes the cost of
solving a regular analysis problem, where L is the number of design parameters. This wide range is a reflection of the different
problems solved, the different procedures used in solving the flow governing equation, and the different degrees of accuracy to
which the design parameters were determined. Tests performed on scheme If indicate that the convergence rate of the solution
is weakly sensitive to variations in the computational parameters and the initial iterative guesses for the design parameters.

The two schemes presented here are only examples of schemes which update the flow variables and the design parameters
simultaneously. Other schemes based on this approach may be developed. The results of the preliminary tests conducted
indicate that the approach of updating the flow variables and the design parameters simultaneously is an attractive alternative
to the costly inner-outer iterative procedure associated ith the use-of conventional optimization schemes. Further tests,
however, are required to better evaluate this approach. Direct comparisons between the results of this approach to the results
of conventional schemes are necessary. Applying this approach to problems i a larger number of design parameters than
used here and investigating its performance in this case is also necessary for a I, .ter evaluation of this approach.
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CONSTRAINED SPANLOAD OPTIMIZATION ,
FOR MINIMUM DRAG OF MULTI-LIFTING-SURFACE CONFIGURATIONS

R.F. van den Dam
National Aerospace Laboratory NLR

P.O. Box 90502 Amsterdam The Netherlands

SUMMARY

An interactive computer program system has been developed that can be used in aircraft drag
minimization studies. It comprises algorithms for choosing the spanwise distributions of lift,
pitaing moment, chord and thickness-to-chord ratio of lifting elements. The choices are optimal in
that they minimize induced plus viscous drag while satisfying constraints of aerodynamic, flight-
mechanical and structural nature. The configurations that can be dealt with, may consist of a number
of segments representing, for instance, wings or parts of wings, horizontal tails or canards,
winglets, flaprail-fairings, etc. Also the interaction between propellers and lifting -elements may be
included in the procedure.

The induced drag is computed using the Trefftz-plane integral (farfield analysis), while the
viscous drag follows from form factor methods. Novel mathematical formulations of the constrained
optimization problems are used, that are based on the calculus of variations. The methoa has been
integrated in an infrastructure that allows the capabilities of the method to be efficiently exploited
in a multidisciplinary environment. This paper presents the theoretical models and methods underlying
the analysis and optimization :apability, comparisons with other theories, information aspects, and
some examples of applications.

I INTRODUCTION

The success of an aircraft design depends largely upon finding an optimal balance between the
contributions of the disciplines involved. Moreover, many of the benefits from emerging technologies
can only be fully exploited through their interactions with other disciplines. Good examples of these
are the technologies of active control and composites which make it possible to design-aircraft with
forward swept wings and relaxed static stability. In order to find an optimal balance between the
contributions of the disciplines and to take maximum advantage of technology advances, the
interactions should be identified and quantified before the main decisions concerning the overall
configuration design are made. This implies the uscessity of developing the analysis and design
capability to a suitable breadth and depth for earlier application in the design process. Increased
breadth means the inclusion of the appropriate spectrum of disciplines and new technologies early in
the design. Increased depth in the early- design stage is required to assure that the interactions are
correctly quantified before the main decisions are made. An example of developing methods of this
nature is the interactive program system for drag mi:iaization studies described in the paper.

Minimization of (aerodynamic) drag is an important goal in aircraft configuration dosign studies
as it helps to improve upon fuel efficiency. In these studies, it has been comon practise to
decompose the aircraft drag in components that are to-a large extent independent. Computational Fluid
Dynamics have created-possibilities for drag-breakdown that is based on physical principles (Sect. 2.3
of Ref. 1). In- such a breakdown it is convenient to distinguiel- between viscous (boundary layer) drag,
induced (or vortex) drag and-wave drag.

With respect to the choice of independent variables In drag minimization problems one may
distinguish different approaches. One is to use parameters defining the geometry as the independent
variables (direct-numerical optimization). While this approach Is feasible in two dimensions (see e.g.
Ref. 2) it is hardly so, at present, in the case of three-dimensional configurations because of the
lack of accuracy in the available three-dimensional codes in combination with the limited computer
power available (Ref. 3).

At NLR, an alternative approach is adopted, namely the use of aerodynamic (load and pressure
distributions) rather than geometric shape functions as independent variables (Ref. 4). This approach,
called inverse numerical optimization (see Fig. 1), involves the successive determination of optimal
target spanloads (using methods as described in the paper), target pressure distributions (optimal
with respect to the specified drag characteristics and providing the prescribed spanloads), and
corresponding lifting-surface geometries (using an inverse code). This process is repeated until a
geometry is obtained having acceptable performances for all flight conditions.

This paper concerns the first step in the inverse numerical optimization approach: the
determinatioa of optimal spanloads. In literature, various theoretical methods can be found for
determining spanloads for minimum drag. Almost all of them consider induced drag only in determining
optimal spanloads (see e.g. Ref. 5, 6, 7). Inclusion of other drag components in the optimization

-...u.w k. .t sutluiaily diiferent minimum- drag spanloeds compared with induced-drag-only
results.

The work described here was performed under contract with the Netherlands Agency for Aerospace
Programs (NIVR)
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Methods that extend the induced drag minimization theory to include other components es well, and can
be used in preliminary aircraft design, are the subcritical design code of Kuhlman (Ref. 8) and the
transonic optimization scheme of Mason (Ref. 9).

The method described in this paper provides capabilities for choosing the spanwise distributions
of lift, pitching moment, chord and thickness-to-chord ratio of lifting elements of an aircraft
configuration. The choices are optimal in the sense that they minimize induced plus viscous drag, or
induced drag only, while satisfying constraints on, for example, pitching mcaent and section lift
coefficients. Determining minimum drag spanloads, also the interaction between propellers and lifting
elements may be included in the procedure. With an optimal spanload, the win& can restore much of the
(rotational) energy loss associated with propeller swirl (Ref. 10, 11). The method may provide direct
input for mere detailed aerodynamic design (e.g. the inverse numerical optimizhtion procedure), but
mr- also be used for parametric airplane configuration design studies. In these parametric design
s,udies, the method is used to quickly assess the consequences of changes in the configuration of
(complex) aircraft.

In the following sections, an outline of the analysis and minimization technique developed is
presented. Informaticn aspects of the interactive system In whfrn the method has been implemented-and
of its environment, will also be described. Comparison with other theories ar' given. Finally, the
capabilities of the system will be illustrated by some examples of application.

2 FO HLATION OF THE PROBLEM

It is assumed that the projection of the aircraft configuration onto a plane perpendicular to
the flight direction can be approximated by a number of straight line segments, representing the
various elements of the configuration. An example is shown in figure 2(a). The geometry description
can include wings (or parts of wings), tailsurfaces, pylons, winglets, etc. The planform-geometries of
the configuration lifting elements can be descrieed by the spanwise distributions of chord-length,
together with the coordinates of the 1/4-chord point locations, defining the planform sweeps (see Fig.
2(b)). The vortex sheets aft of the configuration are assumed to remain undistorted. The latter can be
argued to be a reasnnable approximation in the case of planar optimal spanloads. It is assumed that
this also holds for optimal sptnloads of non-planar configurations. The airplane lift and drag are
thought of as being composed of wing, tail and/or canard, fuselage and nacelle contributions, as
illustrated in figure 2(c). The lift of the fuselage is modelled using the principle of lift carry-
over from the wingp resulting in a constant distribution of bound circulation of the fuselage width.

If the interaction between propellers and lifting elements has to be considered as well, each
propeller is-assumed to shed a helical vortex sheet that is not influenced by the-presence of the wing
(Ref. .2), and that is confined inside a cylindrical "stream" tube parallel to the flight direction.
The velocity distribution inside the slipstream has to be known for a specified propeller and required
thrust.

The followtng problems are to be addressed:
- dettrmination of optimal spanwise lift-distributions plus, if applicable, spanvise pitching

moment distributions that result in either minimum induced drag or minimum induced-plus viscous
drag. In this procedure, constraints may be imposed on total pitching moment (trimmed aircraft),
section liftcoefficients (feasible airfoils), rolling moment and, if applicable, bending moment.
A part of the total spanwise lift-distribution may be specified in advance. In that case, the
induced (plus viscous) drag is to be minimized by adjusting the remaining part of the lift-
distribution.

- computation of the induced (plus viscous) drag for given (non-optimal) Upanwise lift
distributions. For instance, to quickly quantify the penalties that arise from the use of non-
optimal loadings to determine the performance undicr off-design conditions, or to estimate the
induced drag a.-zociated-with flap deflection.

3 DETERMINATION OF DRAG AND LIFT

The aircraft is assumed to fly with a- constant velocity in a uniform, inviscid and Irrotational
medium. An expression for the induced drag in the Irefftz-plane can ba derived by applying the
momentum theorem to a control surface enveloping the -aircraft (Ref. 4 13). Consider a control surface
S of the type as indicated in figure 3. Several subsurfaces of S can be distinguished: the Trefftz
plane (S ), a similar plane far upstream (S ), the top and bottom plane (S.), the body surface (S ),
the shoc'wave surface (S ), the vortex sheel surface (S ), the propeller surface (S ) and the slip-
stream rurface (S. ). 4plication of the conservation laws of momentum leads ?o the integral
expression:

( pn + puqn ) dS - 0, (1)
S

what,, u - Su +  ST + S.+ SB + Sp+ 9v + Ssi S a

p is the (local) static pressure, q is the total velocity vector, p is the density, nn is the nit
-itwArd-normaL to the control surface, and u is the component in the free-stream (x-)direction of q.
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Splitting-off the body pressure integral and realizing that q 0 on S leads to the following
expression for the total pressure drag of the aircraft:

D pnx dS - f (pn, + puqn) dS. (2)
S B S SB

Working-out this expressioa and splitting-off the wave drag integral the following Trefftz-plane
integral for the induced drag can be derived (see Ref. 14):

D, (P-P.) 
+ 

p(u-u.)u - P - dS - E-P iDi(3)

S TIU i-I JiD

H represents the stagnation enthalpy. 0 is the slipstream diameter, J is the propeller advance ratio
(- u,/tD, where w is the propeller angular velocity), Q is the propeller torque and n is the number
of propellers. P

Assuming small perturbations in the Trefftz-plane, the flow being isentropic, and using the law
of Biot-Savart, .quation (3) may be worked out further to obtain (see again Ref. 14):

D i/P, 1 f r(n)vn(n)dn + f r(n)(V .n)d + 1C refU® (4)
v T  

SvA(ST +ST 1

where

C . 2 n
I f V.V (dS-

Sref u! ST  
i.l

r is the bound circulation, v is the velocity induced in the Trefftz-plane normal to the vortex sheet
segment, and V - (u ,v ,w ) is the (fixed) perturbation velocity in the slipstream of an isolated
propeller. n dnotes th? dstance (spanwise parameter) along S VnS The last term in equation (4)
represents the magnitude of the "swirl loss" of the propeller. in the first right-hand term of
equation (4) the integration is performed over all lifting elements, in the second term the
integration is performed over the lifting elements in the slipstream only. The local trailing vortex
sheet strength is equal to the derivative of the bound circulation at that spanwise position; so,
using the law of Biot-Savart, the following expression for v can-be derived:

+ r (n).€ *(T,n) x c) d

vn 2 dr I+(t,( )) 12 d(

Again, the line ittegral is taken over the projections of all lifting cgnfiguration elements
onto the Trefftz-plane. n(n) is the unit vector normal p the position n, and e is the (downstream
directed) unit vector along the x-axis. The vector r(r,n) denotes the vector from the spanwise
position I to the spanwise position n. Integrating by parts with respect to r, equation (5) can be
rewritten into:

vn(n) - Sref u! J f(r,n) r(i) d, (6)

where

r 10 x ex) (

2Y S ~ *'~ 2 ) (7
ref° d. (n)

The other term at th3 right side of (6) has disappeared-since r * 0 at the free end of a lifting
element. Substitution of (6) in (4) yields:

CD - f f(r,n) f(T) ri() drdn + -
2
2f r()(v p(n).(n))dn+C* (8)CD£ Sref '

Thus, the optimal circulation distribution may be computed with the propeller and wing located
both far upstream, eliminating the 3D- omputation of velocities induced by the wing on the propeller
and by the propeller bound vorticity on the wing. In fact, this expression unJerlir.es the correctness
of the postulation of reference 10 concerning the generalisation of the stagger trsorem of Hunk. The
generalized version of the stagger theorem allows the farfield computation as it states that also for
propeller-wing combinations the "net force in the streamwise direction is independent of the
streaaise position-of ifting -.rfee ..h .. circ .... . . o"



16-4

Viscous drag

The viscous drag is derived for give, airfoil characteristics. These airfoil characteristics
define the viscous drag at each spanwire station as a function-of the local section lift coefficient.
An expression for the viscous drag can be derived using the (2D, incompressible) DATCOM/Hoerner
formulae:

Cd C  { I + k(tc) + 100 (t/.)4 (9)

C denotes the flat plate friction coefficient (depends on location of transition point and
local Weynolds number, see Ref. 14) and k is the thickness location factor (depends on location of
maximum thickness). t/c represents the thickness-to-chord ratio. For common airfoils, the wetted
surface Swet is about twice the reference surface Sro f.

Applying thin airfoil theory and considering the velocity distribution and the drag contribution
of both the upper surface and lower surface Individually (hereby assuming the same class of pressure
distributions, see Fig. 4), expression (9) can be written in the form:

Cdvic - C %p I + kup( t + ) + 100 (; + (10)
-~)+100)

+ C Fl{i + klo( t - U) + 100 (9t - 4

;t and u represent average perturbation velocities as a result of airfoil thickness and lift,
respectiv&Iy:

( t . and ; . Wc) cos A (11)

vhere an - FI os2h (12)

A denotes the saeepback and M. denotes the (3D) undisturbed Mach number. C denotes the (3D-) lift
coefficient that is linked, according to the Kutta-Joukowaki theorem, to th bound circulation (see
eq. 15). Substitution of (11) in (10) leads to an expression for the viscous drag as function of C
and t/c. It is plausible to assume, on the basis of DATCOHMs formulae, that k varies continuously wit
the position of the-pressure recovery starting point xR (see Fig. 4):

k - 2 - 8.26 - 0.3 -2.5 - 1.6 R
0.3 cc

Using this formula, k - 2 for xR/c - 0.3 and k - 1.2 for XR/c - 0.8, which corresponds with DATCOM's
formulae.

In the Ci-range of interest, the viscous drag function (10) is approximated by a polar of tho
form

Cd (C -(M C + K( C), (13)
viac itVia + C

where the factors Cv.  K and C follow from a least square fit to the function. Integration resultsvis
In the-total viscous profile drab

Cdvsc (r(n),h) c(n)

CDvisc f Sref dn. (14)

Expressions for lift andmoments
An expression for the local lift follows Iro the Rutta-Joukowski theorem applied in the lift
direction:

C W 2 cos(o(n)) (15)
C(r) g*(n) r(n) where g1(n) u 2 )c(n)

u(n) is tha local upstream velocity for a lifting element at the position n. If (a part of) the
lifting element Is situated in the slipstream, u(n) differs from the undisturbed velocity. V(r)
denotes the dihedral angle. The total lift of the configuration follows from integration.

CL  f gl(q) r(n) dq where gl) - 2 cos(v(n)) u(n) (16)
Srf U.
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If the section pitching moment distribution is not given, it can be deduced from the pressure
recovery point locaticns. For the class of pressure distributions given in figure 4, the next
expression for the section pitching moment Cm w.r.t. the quarter chord point x1/4 can be derived:

c M (C - CL  (17a)

where

SmQ (ti) con A .4 [1a
4  
23 (17b)

m* at a-- =- + a-- ,b

( 3 + a4
A m 2 ( a (17c)a I + a2/

and

a1  2 a3 2 4  2 4 x + 'R
u u u

a 1- +* a 1 +I1 L 12

2 2 2X t 4 2 24 t 6'it.

C£ follows from (15). m and m2 are known constants. With the section pitching moment defined with
respect to the quarter-chord point, the total contribution of the lifting elements to the aircraft
pitching moment w.r.t. the centre of gravity then follows from:

C M g2 (n) r(n) d + 1 2 f1 c(1) c
2
(n) u

2
(n) dn (18a)

ref'ref
u

where

92(n) 2 2 u(n) (xc.g.- x114(n) - A(rf)c(O)) cos(w(n)) (18b)

ref'refU!

eref denotes the length of the reference chord, and x .g. is the longitudinal coordinate of the
coinfguration centre-of-gravity.

If the aircraft configuration is asymmetrical, (e.g. a configuration with propelle:s all rotating in
the same direction), a rolling moment constraint CR w.r.t. the point i - 0 (in the plane of symmetry)
may be imposed:

C- J g3 (t) r(n) dri (19a)

where

g3(n - 2 b (n) 2 1yWO) - y(0) Cos O(T(O) + WOr~ - s(O) sin O~N) (19b)

Sref refU

bra is the reference span. Note that the rolling mOment coefficient C equals 0 if the aircraft

cnfiguration is symmetrical. a

Limitation in destgn cz, t/c, c andM

In order to ensure that the computer program works with feasible airfoil characteristics, a
relation defining feasible combinations of (design) lift coefficient, (design) Mach number, wing
thickness-tt-chord ratio and pitching moment coefficient may be formulated. For supercritical
airfoils, a graphical representation of such a zelation betweet. t/c, e and M is given in figure 5 for
c - -.110. Data for other c -levels follow from the relation 6(t/c)f6c - -0.6. The re'ation can be
considered to represent a 'Pondensed" section characteristics data base for a feasIble class of
suprcritlcal airfoils. This class is described by a relation between allowable combinationq of design
c , H, t/c, c . The data base-holds for 2D-airfoils. If a sweep angle A is applied, the 3D-values have
to be calculaTed from the 2D-values using the relations:

Ct(3D) - cI(
2
D) cosa , C (3D) - c (2D) cos 2A,

(3D) - 1 (2D) cosh , (3D) - H (2D)/cosA.

The data base is used when Imposing (local) lift coefficient constraiun. la 4z;r. t'!d zation
procedures. In the case that the usar provides pitching moment coefficient distributions, the
combination of rtc, H and c directly leads to the upper limit of the allowed range for the (design)
lift coefficient. If the piching moment coefficients are not directly specified, the combination of
t/c and H only results in a feasible em-c. area. In that case, the pitching moment coefficient
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distribution maybe defined by relation (17), which further restricts the possible cosbxnations of c
and c. in this feasible area. Both cm and c. are then found as part of the solution. m

It is emphasized that the "data base" of feasible characteristics Is representative for a
certain class of airfoils. The user should check whether this data base is compatible with his own
experience. If required, the relation may be modified to his own experience.

4 DRAG MINIMIZATION

General

The numerical optimization of drag is based on an approach, in which the evaluation of double
integrals (see eq. 8) is avoided. This is realized by first deriving analytically the necessary
optimality equations before doing any discratization. Discretizaton of the bound-circulation
distribution in the (single) integrals is performed starting from these analytical necessary
opti nlity equations.

Analytical necessary optimality eguations

The drag minimization problem can be stated as follows: determine the function r(n) that mini-
mizes the functional CDI + C visc subject to constraints imposed on CL, CH and, If required, on CR:

G1"c'%da 0
G L-Cdes 

0

G2 , cH- Cedes- 0 (20)

G3.- S -CQ  '* o
Also CZ(n) may be constrained:

G4(n) - CW(n) - Ctdes ) 0 , Vri. (21)

Cdes Mdes and the (dimensionalized) propeller torque CQ are prescribed values for CL (eq. 16),

CM (eq. 18) and CR (eq. 19). C des(n) follows from the relation-between ci, t/c, cm and M as

described in the preceding section. Expression (8) and (14) specify the induced drag CD and viscous

drag C9 vs c, respictively. i

The problem may be solved through the introduction of Lagrange multipliers. That is, the
augmented integral

3
-CDi C Clvi I + A Gi + J V(n)G4 (n) dn

is formed, where the Lagrange muLtipliers AI (i - 1,3) and 1(n) are to. be determined. The next step
towards the solution of the optimization problem is to write r(n) - r(n) + st(n), and to form the
first variation 6I of I with-respect to variations of r(n),

61 f [2 J f(%,n) r(T) dT + 2---(Vp().n(n)) +

4 Sref ®

+ 2 K (n) g(n) i(n) - 2 K kng 1 octo + Isg(n) + P(n)g~nt) 6(n) di (22)
i-I

In this variation, the parameters V , K* and Ci, and all geometry-related parameters, have fixed
values. 

p

The necessary condition for the minimization of I I that the firat variation vanishes. This
condition holds for any arbitiary function dr(n), hence the term between brackets in (22) must vanish
at all spanvise positions. In fact, this necessary condition for the minimization of I is nothing else
but the Euler-Lagrange equntlons of variational colculus. Upon substitution of the expression (6) for
f(T,n), the condition can also be written in the form:

v( V + n(. + 2r ()*(n)r(.,) -2K n ,2 ,c2- ( v M + 0() (0) +n 8 C(n) + E igi(n) + v(n)gl(n) - o

Sref 
i-I

that must Lold for all T). In combination with the constraint relations (20) for CL, CM and-CR, and the
constrr-int for Ci(n) ,ritten in the form
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1()(Cj(n) - Cde(n)) - 0 -I Vn (24)
2:(n) 0,

the aptimal bound circulation is determined.

It may e noted that, if only the Induced drag is minimized (K - 0) in a flow without propeller
slipstreams i% - J) and imposing the total lift constraint only, the necessary condition reduces to
Funk's criterim for minimum induced drag (Ref.15)

2----"-vW) + A (C L - - 0 'V
S uLdesrefde

In words, "the induced drag will be a minimum when the component of the Induced velocity normal
to the lifting element at each point Is proportional to the cosine of the dihedral angle of the
lifting element at that point (vn - w0 cos

Numerical approach

The necessary optimality conditions (23) for the drag minimization includes an- integral
expression for v . Direct integration can he done analytically only for the most simple bound
circulation distrfbutions. Thus, to solve the integral equation (23) by approximation, it is necessary
to assume a priori a convenient shape of the bound-circulation disrtibution function r(n). The
discretization model adopted here is the same as that utilized by Kuhlman (Ref.7) viz a piecewise
quadratically varying bound circulation:

dr1(p) p + hido- " iI+- £ I"Y-
)  

"hii oi hi (25)

where h is the half-width of the panel i. p Is the panel coordinate: p - 0 coincides with the panel
midpoint, while p is positive if located outboard of this point. y and y, , denote the trailing
vortex sheet strength at the panel ends. Ucing this discretization moel and a-suitable panel-spacing
technique, sufficiently accurate soluticns can be obtained with a relatively small number of panels.

The Integral expression (5) for the normal velocity v can be written as a qum=ation of panel
integrals. Upon substitution of the discretization model, the following expression for v induced at
panel j and at a distance T from its midpoint can be derived from (5) and (25): n

2k y + h +
2kr Ti_l__ Ti- yi-I h

i
vj () i-l  -h I  2i -hi

where

A(P,r) - f (P,T)2  
and T - [-hj, hi)

The summation is performed over all (2k) panels at both sides of the (xz-) plane of symmetry.

The integrals in equation (26) over each individual paitel are evaluaLed analytically.

From equation (25) follows

i+
3
Yi Yi-Y 11  2

r( ) - r(hi) - hi 2 4. (-h1  € hi) (27)

where
r(hi) - - Z (Y 1+ Y) h.

The summation is performed over all panels located outboard panel i.
Application of the necessary condition (23) at all panel midpoints, using expressions (26) and (27)
for v and r respectively, then results in 2k relations for the unknown trailing vortex sheet strength
values and Lagrange multipliers AI and V,,

2k 3
Z' BiJ + 1 gijli +jglj - bj j - 1,2k (28)

where the index J indicates the panel at the midpoint of which the necessary condition is imposmd.

Substituting the discrete bound-circulation model (25) in the eeuationn. (1), (le), (n9) 4
(15) for CL . C - P R2nd C"(!, ) eCCiveiy, these equations can be !ntegrated analytically and can
be expressed in terms of the trailing vortex-sheet strength values Y . Together with the 2k-relatione
(28) and the constraints (20) and (24) they form a system of linear e uations for the- unknown trailing
vortex-sheet strengths and Lagrange multipliers. This system determines the optimal spanvise
bound-circulatioa distribution that results in minimum drag.
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The method devl.ied automatirally takes care of svtisfying leimholt
z
' theorem at configuration

element iatersections, which is manifested by jumps in the boun4 circulation distribution. If a
symetrical aircraft configuration is considered (no propellers, or a counterrotating pair oi
propellers) this resulte in k unknown vortex sheet strengths yi and the range of j in equation (78)
reduces to j - l,k. In addition, the ralling moment constraint may be deleted.

In order to avoid rather complicated and computationally expensive integrals the drag components
are calculated usi.ag a numerical integration rule, instead of integrating analytically. Two ortions
are provided: the midpoint rule and the Simpson rule. Using a panel arrangement method with properly
increased panel deusity in regions with comparatively large rv -variations, use of the midpoint rule
already results in a sufficiently accurate approximation wit. a relatively small number of panels.

Knowing the sparvise bound-circulations a-so other quantities of interest can be determined.
Examples are trimdrag, bending moment distribution, and the overall forces acting on the aircraft
componen" s.

5 IFORfATICS ASPECTS

The drag analysis and minimization has been integrated in the NLR -oftware infrastructure for
computer aided engineer.g. The Int-gration is required to apply tee system for parametric
configuration design staupes (interaction with other disciplines) alternately with existIng detailed
aerodynamic analysis and des-gn methods (iterative adjustment of aerodynamic design choices). The
existing infrastructure reflects the industrial infrastructure for computer alded desiga in order to
facilitate the transfer of information systems to industry.

The integration as described above requires
- methods for the generation of the information;
- means for the management of information;
- means for the management of methods

At NIR, solutions for these require.-snts have been found in developing an architecture in which
a data base and a data manager, and a-method base and a method manager, form the key eleecnts (Ref.
16). The data manager enables storage and searching of data in terms familiar to the user. le is used
as a means for conservation of data produced in the information system, or transfor of information
between subsequent phases, between steps in each phase (iteration), an! between the disciplines
involved (interaction).

The method manager enables structured storage and searching of methods which extensive
descriptions of their functions and their implementations. The methods themselves are stored in a
method base. The method manager supports the conposition of existing methods to a new Zethod, and
consistency checkSng of the implementations in such a composition o mechods. Through the use of a
method manaZer the method development can be controlled, the methods can be maintained during a long
period of time and can be re-used in several applications.

An executive supports the e).ecution of methods on a netwoAk of computers. It takes care of the
file transfexs over the network, and of job execution. lhe'eas the method manager checks the correct-
ness of a composition of methods, the executive checks the compatability of the methods and the input
information.

The architecture of which the system for constrained spanloid optimizatiou is a part Is given in
figure 6.

6 EXAHPLES OF APPLICATIONS

In this section, a number of typical examples is presented that demonstrate some of the
capabilities of the method developed. The-examples do not represent actual design studies.

Induced drag only
Obviously, the accuracy of numerical induced drag methods iF affected by the discetization

model of the bound circulation distribution. It has been shown for a planar wing (Ref. 7), that
methods using piecewise quadratically varying bound circuletions, are approximately four to five times
as accurate in computing the induced drag as a rtex-lattice method with the same equal-sized panal
arrangements. In figure 7, the present method i compared, for a planar wing, with the method of
Kuhlman (Ref. 7), in which also quadratically varying bound circulations are used. Although the
present method is less time-consuming than Kuhlman's method, it cat. be seen that the differences in
accuracy and convergence are very small; both methods approach the exact value of the induced drag
rapidly a- the number of panels increases. Using 10 wake panels per semi-span, the minimum induced
drag of che plana wing is computed with an accuracy of about 0.2 percent.

For a non-planar configuration, the present method is compared with A result obtained by Lundry
using a conformal-mapping technique (Ref. 17). In figure 8, the optimal bound circulations are
compared foe a wing configuration with vertical endplates (or winglets). As can be seen, the results
of both methods agree well.
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In figura 9, some of the system capabilities with respect to trimmed induced drag minimization
are demonstrated for a transport-aircraft type configuratton, a sketch of which is given. The minimum
induced drag as function of the centre-of-gravity location for three different vertical positions of
the horizontal tail is shown in figure 9a. The spanwise C -distribution was specified (C (n) - -. 106 1
0 S n S b/2) and for the body pitching moment coefficientm C h, - + 0.007 was adopted. Ths rigure
shows that for (kconventional) cases of negative tall loads, 'iiae minimum induced drag increases with
increasing height of the horizontal tail. Note that the lowest values of minimum induced drag are
obtained for high-tail configurations with positive tail loads. This suggests that, frem the point of
view of induced drag, there might be a preference for high-tail positions for configurations cotlbinitig
relaxed static stability with active control technology.

In figure 9b, the influence of the tail-to-wing span ratio and the vertical position of the
horizontal tail on the minimum induced drag is displayed for two different positions of the
centre-of-gravity. Io can be neen-that, for a fixed height of the horizontal tail, the miniw.-q induced
drag increases with decreasing tail-to-wing span ratio.

The irelusion of C (n)-constraints in the optimization procedure is realized using a relation
between c (des), a (des), H and t/c (see section 4). As an example, the same configuration of figure 9
.*s considiered formN - .735 The limitations in design c., t/c, c and H of figure 5 (supercritical
airfoils) are used. Instead of giving a specified apanwise C -distribution, now the pressure recovery
pjoint locations have been given (x L(n) - .5 1 0 S n S bh). With this, a relation between Ci and
C is specified (see eq.(17), kflc(n) - 15.5 Z I 0 S n S b/2). In figure 10, the o-ptimal
C-distribution is compared with those of the "no wing-thickness constraint" option (x: at 30 %
aC). The figure shows that, in this particular example, the Ce-dlistribution has changed f&gd constant
C. over a portion of the wing. The inclusion of wing-thickness constraints results in an Induced-drag
increase of about 2 %.

Induced drag minimization Including propeller slipstreams

In order to examine the effects of the propeller slipstream on the aircraft induced drag, the
axial and tangential velocities in the propeller slipstream have to be given. For a particular example
design conditiote, the distribution of propeller induced velocities of figure 11 has been used (advance
ratio of J - 0.13 and a thrust coeffict-nt of CT - 0.12).

For a wing configuration with two "up-inboard" rotating propellers, located at 25% of the
semispan with a diameter-to-span ratio of 13%, the optimal spanwise- bound circulation-distribution Is
shown in figure 12. This distribution greatly differs from the optimal "clean wing" distribution that
is also shown in figure 12. With this distribution, the wing is capable of restoring much of the loss
associated with slipstream swirl.

In figure 13, the effects of the horizontal propeller position for different rotating concepts
of the propellers on the minimum induced drag coefficient have been plotted. As can be seen clearly
from this figure, two up-inboard rotating propellers lead to a most favouraule configuration with
respect to the minimum induced drag. If the location of the propeller-centre is moved outboard,
induced drag will decrease for two up-inboard rotating propellers and will be a minimum when the
propellers are located at the wing tips (see also Ref. 11).

It Is apparent from the results above that favourabl- liftng-element/propellor interference
resulting in lower induced drag or, equivalenty, induced thrust, may be produced by appropriate wing
design. The required C -distribution may be realized by, for instance, adjustlng twist, thickness,
camber and chord distributions. The results obtained agree with those of Kroo (Ref.LO), who showed
that in some cases- all of the swirl loss can be recovered.

Also proper design of the engine nacelle/pylon may possibly contribute to swirl loss recovery.
aigure 14 presents the optimum span loads for two configurations (with up-inboard rotating -propellers)

one utilizing passive (streamline) shaping of the pylon and the other having an active loading ou the
pylon. In this particular example, a 9 Z reduction of the-minimum induced-drag Is realized. Of course,
this is not an actual design case and the benefit can be realized only at the cost of a more
complicated detailed design, but it may be interesting to investigate the possibilities of a more
active role of the nacelle/pylon.

Induced + viscous drag-mLnimizction

The importance of including the viscous drag component in the minimization procedure is
illustrated by the ne.'- example. This example concerns a wing-canard -configuration. In this example,
th, preisure recovery -polt l.cations aave been given ((x/c) R - .5; (x/c)R £ - .4), while for the
t~ickness-to-chord ratio (t/c) a constant value of 12 % has bedn adopted.

In figure 15, the-drag as function of the centre-of-gravity location is displayed. The upper set
cI drag curves represent the sum of induced + viscous drag (only the viscous drag of wing and canard
Is considered), while the lower curves are for the induced drag alone. jy optimizing the sum of the
induced and viscous drag, the total drag is lass than it would h'7e been if only the induced drag-was
minimized and the viscous drag addd-aftervards. Of course, the it,' ted drag alone is-greater-when-the
set- of the drase is minimized than when induced drag alone is opt mized. In nddition, the total drag
minimum is located about 1O b/2 ahead of the minimum induced crag alone position, stressing the
importance to include (estimation of) viscous drag in configuratir. design studies.



16-10

In figure 16, the section Cf a for both minimum induced-drag and minimum induced plus viscous

drag are given for the minimum (induced + viscous) drag c.g.-position. At can be seen, the tnclusion
of taofile drag results in a Yeoduction of peak section C. and an inboard shift of the spaultading for
the ain wing.

The results agree with those of Masen (Ref. 9), who ehowed thit a drag reduction vi about 5%
could be achieved by including the profile drag in the optimization procedure.

Configuration design studies
The method developed can also be used for parametric ptalimina design studits, for instance,

to assess the effect of changes in size, location, dihedral and sweep'ack of wing, tail or canard,
winglers, etc. The configuration nay be of the conventional type (tail-aft) or nonconventional type
(canard, three-surfcco configuration, forward swept wing, etc.).

A typical example of a noncc.ientional aircraft ronfiguration is the three-surface aircraft
(canard, wing and aft tail) given in figure 17. For tao canard-wing and wing-tail con'iguration, the
specification of the centre-of-gravity position (static margin) and the trim condition are most
decisive to fix the -balance of lift between the vit.g cnd control surface, but for the canard-wing-tail
configuration the lift distribution among the surfaces van be chosen to reduce the total induced drag
while retaining trimmed conditions at a specified static margin. The three-surface orculationdistributions of figure 17 are only presented to illustrate the capabilities of the system hnd are not
meant to represent an actual configuration design study.

In the past couple of years, there hcs also been a renewed interest in aircralt configurations
with forward swept wings (FSW). According to reference 18, the application of forward swept wings may
result in, among others, lower induced drag and higher maximum lift coefficient as compared with an
aft swept wing (ASW). The problem of aero-elastic problems for forward swept wings may nowadays be
solved by using an aero-elastically tailored wing using composite materials. Figure 18 shows that inthe case of forward swept wings, the tendency of spanwise loading for minimum trimmed induced drag is
to move inboard.

Configuration design studies may concern the composition of the total aircraft lay-out as well
as local alterations of the aircraft configuration as is the case, for instance, when the effective-
ness of winglets is investigated.

7 CONCLUSIONS

An induced (plus viscous) drag analysis and- minimizatioh method- has been developed that provides
a low cost and-useful tool, that can be used both !or preliminary aircraft design purposes, and for
providing direct Input -to derailed aerodynamic design procedures. In the latter function, the method
provides bound-circulotion distributions that may be used in specifying target pressure distributions
for inverse aerodynamic de;ign codes.

Complementary to the determination of optimal spanloads, the method can also be used to support
selection of spanwise distributions of pitching moment, chord and thickness-to-chord ratio. In the
procedure, the interaction between propellers and lifting elements- may be included. Compared to other
methods in this spirit, t .e present method is less time-consuming than near field methods and more
accurate than vortex-lattice methods. Comparisons with known solutions of other theoretical methods
have proven excellent agreement.

The examples shown in this paper illustrate the importance of considering, early In the design,
all aspects that may influence the drag characteristics. The inclusion of, for instance, viscous dragand/or propeller slipstreamr ay lead to other choices for the spanwiae distributions of lift,
pitching moment, chord, and thickness-to-chord ratio than when only the induced drag without
propeller-slipstream is considered.

The method has been incorporated in a CAD-type program system witn alpha-numeric and graphicdisplay capability and may be used as a stand alone syston. The system is fast and easy to use, and
therefore very suitable for Interactive design purposes in which rapid configurarion I.rade-offs have
to be made. The system has a wide field of application. It may be especially uselul to support the
assessment of unconventional design concepts in which lack of experience precludes good design
decisions. Examples of unconventional concepts are three-surface configurations, relaxed static
stability, "active" nacelle/pylons, forwaj swept wings, etc.

The capatllities of the system are exploited more efficiently when used in a multidisciplinarydesign environment. The existing infrastructure in which data management and method -management are key
elements, meets this requirement. The application of data and method management supports thecomposition of existing methods, control of method development, incorporation of improved versions and
re-use of software. In addition, it supports the transfer of the information systim from thedevelopment environmeot to thi design environment in industry. This is Import&nt as return-on-
investment is realized nlv by application of the system in-the design process in industry.
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NUMERICAL OPTIMIZATION OF TARGET PRESSURE DISTRIBUTIONS
FOR SUBSONIC AND TRANSONIC AIRFOIL DESIGN

J.A. van 1gzond
National Aerospace Laboratory NLR

P.O. Box 90502
1006 BM AMSTERDAM; The Netherlands

Summary

Inverse aerodynamic design, calculating the geometry from prescribed pressure distributions, leaves
the designer with the problem to define proper target pressure distributions. Numerical optimization
techniques are employed to support the aerodynamic designer in the definition of target pressure
distributions for subsonic and transonic airfoil disign.

A general parametric representation of airfoil pressure distributions is given, taking into account
the physical characteristicj of the airfoil flow. This parametric representation enables the designer to
define "optimum" target pressure distributions through numerical optimization techniques.

Worked out examples show that a large class of airfoils can be described by the proposed procedure.
The nature of the aerodynamic design problem appears to be such that best results are obtained with

a simple line search method. In general, a large number of iterations is needed to arrive at the final
(optimal) solution. However the requirement of a large number of iterations is not a serious drawback of
the approach described in this paper.

Finally, it is concluded that application of numerical optimization techniques is not (yet) to be
considered as a routine job but considerable-possibilities are offered to improve design results.

I. Introduction

Aerodynamic design by means of solving the inverse aerodynamic problem is common practice nowadays.
The main problem the designer Is faced with concerns the-definition of the velocity - or pressure
distributions that have to be realized. Figure I presents a tynical flow chart for the aerodynamic design
process. For a transport type wing design, the "man-if-the-loop" defines, apart from many other things,
wing loading and load distribution along the span. Constrained induced drag optiLzation, as performed-by
SAMID (ref. 1), is found to be a valuable tool to select proper spanload distributions. Subsequently-the
chordwise load distributions have to be chosen in order to arrive at the starting condition necessary for
the geometry calculations by means of, for instance, the-wing design procedure, INSYST (ref. 2). The
present paper deals with the development of a- system to support the man-in-rhe-loop in defining chordwise
pressure distributions. For a high-aspect ratio transport wing this means the definition of equivalent
two-dimensional target pressure distributions.

So far, the definition of target press,tre distributions relied to a larg extend on the knowledge
and experience of the aerodynamic designer. However. was felt that allcation of numerical
optimization techniques could improve efficiency of tme process and the quality of the process. So, NLR
started a program to incorporate known numerical optimizati3n techniques In the airfoil design procedure.
Althouth it has to be kept in mind that tae term optimization might be somewhat misleading and should be
read-as "design Improvement" otherwise, according to Vanderplaats (ref. 3), -"Expectations of achieving
the absolute best design invariably lead to maximum disappointment"-.

Application of numerical optimization techniques In airfoil design in itself is not new and a brief
review-will be presented in chapter 3. So far, the known applications operate directly on the airfoil
geometry while the present approach deals with the pressure distribution only.

Experience so far indicates that the number of iterations during the optimization increases rapidly
with the number of independent design-variables. The Jatter approach requires only an evaluation of the
boundary layer for each iteration instead of a complete flow field calculation. So, a large number of
iterations is less of a problem. This allows a larger number of design variables and thus probably a
larger design domain.

In order to perform the-study an interactive optimization system-designated CADOS (Computer Aided
Design by Optimization ystem) was developed (ref. 4). It is a general modular system to handle al kinds
of constrained optimization problems -and will be briefly described in chapter 2.

The main body of the present study deals-with tee problem definition and parametrization of 2.1
target pressure distributions (chapter 4). A few-exampies will be presented in chapter 5.

2. CADOS

The general design problem is characterized by:
- a number of independent design variables x fi-l,n]
- a function to be minimized (or maximized) Fbj (x- a number of constraints prescribed for the design variables andor for some so-clled constraint

functions g(x ) fJ=l,mi
Then the mathematical formulation reads:

minimize Fobj (xi)
subject to x - -< X

g -<g - gu J-l,m
where indic-es I and u a and for lower- reap. upper value to be prescribed by the designer.

The constrained minimiration problem is often transformed in an unconstrained problem by redefining the
constraint functions as so-called penalty functions. Then the r blem formulation could be:

minimize Fobf (x.) + a. + a + .....
Here A 2, ... are theco'siraini ,iolations (penalty functions) and a1, a2, ... are aeme kind ut
multipliers used for a proper scaling of the-penalty functions.

At present a large number of algorithms is available to solve the above problem (see e.g. refs 3, 5
and 6). Each of these methods has its own specific strong and weak points. Without detailed knowledge of
the characteristics of the (design) problem to be solved it Is not possible to select the best method.
Nevertheless it should be kept in mind that the following characteristics apply to most of the available
methods.
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- A minimum found might be a local minimum and there is no straight forward way to find out whether
the minimum is a local- or a global one.

- Optiization becomes increasingly difficult with the non-linearity of the problem.
- Continuous first- and second order derivatives are often assumed.

Note: Optimization convention is to minimize functions. However, it wil be clear that a maximum is found
by minimizing the function with revarsed -sign.

Now, CADOS stands for an interactive design system that controls the data flow between- and running
of a number of user's specified (sub)routines in an optimization procedure (see figure 2). The user
selects his routines from the available librarary and/or supplies additional routiaes. The user always
supplies the routine ANALYSE (figure 2), in which design variables are definea, ald functions determined.
During the design session, the user Interactively ehoses the variables and functions to be active or
non-active, and which of the "active" functions is to be object function and which are constraint
functions (contraints may be adjusted). As a result a flexible system has been realized which enables the
user to control the course of the optimization procedure to a large extent.

At present the following standard optimization routines have been implemented:
- POWELL (For non linear problems, includes a quadratic approximation of the Lagrangean function and

a linear approximation of the constraint functions)
- SIMPLEX (a sequential search technique)
- NAG 0 (a sequential augmented Lagrangean method including a quasi Newtonian method)
- NAG I (a sequential quadratic programming algorithm)
For more details, see ref. 5.

3. Review of existing methods

Several authors have reported on the use of optimization techniques for the airfoil design problem
(e.g. ref. 7, 8, 9, 10). All these applications have in comon that, in some way or another the airfoil
geometry (or a part of the airfoil geometry) is represented by general shape functions. Then, geometry
perturbations -are used to arrive at a better airfoil. The following typical methods can be distinguished

A. Represent a (part of the) geometry by means of some general function, see fig. 3a (polynomial:
Hicks/Vanderplaats, ref. 7; cubic splines: Hisegades, ref. 8).
Because every geometry perturbation requires a complete flow field evaluation, the number of free
variables is limited, for economic reasons. This restricts the design domain. Nevertheless, several
successfull airfoil improvements have been obtained (decreased transonic airfoil drag).

B. Represent an airfoil by a linear combination of known airfoils, see fig. 3b (Vanderplaats ref. 9). A
possible way to increase the design domain still for a limited number of design variables.

C. Represent an airfoil by a basic shape plus a (linear) combination of typical geometry perturbations,
see fig. 4 (Aidala/Davis/Mason ref. 10). Aidala et.al. define a limited number of so called
aerofunction geometry perturbations each of which results from a typical pressure distributicn
modification. Aerofunction shapes are calculated from-prescribed pressure distribution-modifications
for a -known basic airfoil. It is claimed that a set of 6 aeroshape functions represents a sufficient
large design domain.

From the data published by Aidale et.al. it can be seen that relatively simple pressure distribution
perturbations require complicated geometry variations. Indicating the difficulty to realise a general
geometry-shape function with only a limited number of independent variables. So, it seems a logical step
to parametrize the pressure distribution and try to optimize the target prossure distribution directly.
This approach offers the following advantages
- It matches the design philosophy as described in the introduction.
- Only boundary layer calculations are needed during the iterative optimization procedure. So, a large

number of iterations is less a problem, allowing a larger number of design variables.
Of course there are some disadvantages too e.g.
- Care is needed to stay within feasible pressure distributions.
- Curvature effects on the boundary layer development are taken into account for the starting geometry

only and might be different for the new dssign.
Nevertheless, from a practical point of view, optimization of the (target) pressure distribution is
promising and the present study investigates some of the possibilities.

4. Problem definition and parametrization

In order to make the definition of 2D target pressure distributions accessible for numerical
optimization techniques, the pressure distribution has to be described-by a limited number of
characteristic parameters. The problem faced is; define a large class of possible pressure distribution
shapes by means of as few as possible design parameters. Once the pressure distribution defined, only
boundary layer calculations are needed to judge the-quality of it (drag, transition location, etc.).
There are some design problems best solved by defining a specific function for (a part of) the pressure
distribution (an example will be shown in paragraph 5.5). However the main body of the p esent study
concerns the description of a 2D pressure distribution in general terms by means of so-called aerodynamic
shape functions.

It will be clear that in actual design practice a number of possible object- and constraint
functions can-ha defined. Howevar. a=descrintIn of them all is beyond the scope of the present report.
Some of them will be mentioned at the presentation of a few-examples in chapter 5. Here, only the
parametrization of the pressure distribution will be dealt with in more detail.

Roughly speaking, the velocity distribution on-the airfoil upper- and lower surface can be
characterized by three specific regions:
(I) Stagnation point, immediately followed by a rapid acceleration.
(II) A region with slightly accelerating, slightly descelerating or constant velocity, for transonic

conditions often ended by a shock wave.
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(III) The pressure recovery region where the velocities decrease to the trailing edge value. For the
lover surface of rear loaded airfoils completed by a small region with accelerated flow.

Figure 5 presents a characteristic pressure distribution defined by eight points and linear Interpolation
between these points. Without shock, points 2 and 2' coincide. With shock, the jump between 2 and 2' is
determined by the local mach number at 2. For a given free stream mach number the points 4 (stagnation
pressure) and I and 8 (trailing edge pressures) are considered to be known and fixed. This leaves level
and position of the points 2, 3, 5, 6 and 7 (ten design variables) free to represent a large class of
(simplified) pressure distributions. Refinement of this model would be possible by increasing the number
of "characteristic" points. However, soon large number of points will be needed to represent more
realistic shapes, resulting in a prohibitive large number of design variables. Other ways for refinement
are, e.g. non-linear Interpolation between the points; adding wave functions with amplitudes as design
variables to a starting pressure distribution etc. Several of these options have been investigated during
the present study. So far, best results have been obtained by a set of "interpolation rules", taking into
account the characteristic behaviour of the specific part of the pressure distribution to be represented.
Each of these so-called aerodynamic shape functions has been derived from well known aerodynamic theory.
It Is beyond the scope of the present report to describe the derivation of these functions in detail. It
has to be sufficient to present the relations and to note that for certain combinations of the design
variables tcoefficients and exponents), approximations are possible of the typical classical flow
characteristics. The following functions have been defined, with reference to figure 5.

A. Stagnation flow region (3-4-5)

Rather than suggested in-figure 5, the stagnation point (4) will usually not occur exactly at the airfoil
nose but somewhat downstream on the lower surface. In order to maintain physically realist!, pressure
distributions in this region, a stagnation flow shape function has been defined, approximating the
potential flow velocity distribution for elliptic cylinders (for small x/c and small incidence):

" v('4K+'ad a3 c I a"2 a3' a4 *c a3 c

U./K 53 K+ 21

(N.B. + sign for upper surface; - sign for lower surface)

Here KI2 - Ka4 represent the design variables to be adjusted by the optimization procedure. ReferIng to
the el ptic cylinder nose radius and (local) incidence at the nose may be estimated from.

Z)... K aI2 .. Ka2  (Radians)Ka3

B. "High velocity" regions (from 3 to 2 and from 5 to 6, fig. 5)

These regions often exhibit small pressure gradients at design-conditions. So, a relatively simple
representation can be chosen. In-order to be able to represent also laminar flow conditions the following
function has been chosen.

u X K b2 2 - Obo) )+X b37. " cb c "

which, for (I.. and ( ) bl approaching zero, approximates the-well known Falkner-skan solution for similar
laminar boundary layers (Index bO refers to the start of the region).
Kbl - Kb3 are the design variables to be adjusted by the optimization procedure.

C. Turbulent pressure recovery region (from 2 (2') to I and from 6 to 7)

The family of functions for this region-should resemble concave and convex shapes, Including the
Stratford solution for turbulent zero skin friction pressure recovery (ref. 11). The Stratford solution
exhibits two branches. The main branche, transformed from Stratford's canonical pressure coefficient to
the ordinary ' deflnition can be generalized as follows:

x x

2S - (-XcO I/5 'KCp -cPC 0 o (+ 
" 
() I/ K ~ - II c3
c2

Index cO indicates the start of the recovery region and K to K are the design variables. This
function represents a wide class of shapes, including an pproxiQ tion of Stratford's pressure recovery
solution.

D. Rear loading region (from 7 to 8)

For so called rear loaded airfoils, the lower surface velocity usually accelerates from the end of the
pressure recovery region to the traling edge. For this region, a simple polynomial was defined reading:

x -x.Cp Id - ( Kd2 {x (d) + Cpdo

At.,ln index do indicates conditions at the start of th? region and Kdl and Kd2 are design variables.

E. Shock relations (possibly at points 2 and/or 6)

Good transonic design conditions usually incorporate weak shocks at upper and/or lower surface. So, a
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proper shock description is needed. In viscous airfoil flow, the pressure Jump measured at the foot of
the shock is less than the Rankine Hugoniot pressure jump. Besides, the shock will be "smeared out" In
the boundary layer. So, in order to describe shocks directly In thi pressure distribution some e!Lpirical
relations are needed. From a compilation of experimental data (sea fig. 6, taken from ref. 12) it is seen
that the following modification of the Rankine Hugoniot relation is a reasonable approximation for weak 2
dimensional shocks (HI < 1.3):

7.M
2 
-I 7(M, -1)

-0.7 f u I + 0.3 Cp - p + 0.7 (Cp.. 
Pus 6 ds u 0.7 

M  
6

(us and ds for upstream and downstream of shock).

An empirical rule for the shock thickness is presented by Delery (ref. 13) for weak 2 dimensional shocks:

Ax < 1.3
6 us-l) 14US -

us

Here 6* and Hi represe displacement thickness and kinematic boundary layer shape parameter
respectively, just in fron of the shock. The shock representation becomes active only if exceeds
1.1 at point 2 and/or point 6.

Characteristic points and functions presented above represent a rather large class of airfoil design
pressure distributions. Note that not all of the design variables indicated above are independent. Some
of them are directly determined by the requirement of a continuous pressure distribution. With properly
selected basic airfoil geometry and design requirements, a boundary layer calculation method and an
optimizer as driver for defining the pressure distribution almost all ingredients are available for a
system for designing airfoil target pressure distributions. However for transonic conditions with shock
waves boundary layer calculations only do not account for the momentum loss through the-shock. So, the
evaluation of the pressure distribution has to be completed with an evaluation of the wave drag. A
convenient relation to estimate the magnitude of the wave drag has been proposed by Lock (ref. 14):

R 1+0.2 H (-)(H1-1)4

Cdw - 0.4 M. IM(1+0.2 H1)

Where R is the radius of 'curvature of the airfoil geometry at the shock position. Lock found an accuracy
be tweenS-1o and +30Z of the wave drag for weak shocks (1.1<H, <1.5), which seems sufficient for the
present application.

Finally some remarks concerning the parametrization described above:
- It becomes obvious that the aerodynamic design problem is strongly non linear and it is likely that

non-continuous derivatives-will occur as well as fo;. object function(s) as for constraint functions.
- Sometimes a step by step approach is possible by splitting the design problem in several

optimization problems of reduced size, e.g. deal with upper- and lower surface separately.

s. Examples

5.1. General

Unless otherwise stated the examples to be shown have been calculated for the parametrization as
presented in chapter 4. Drag and boundary layer characteristics have been computed with an integral
method (ref. 15).
This method comprises:
- Laminar boundary layer according to Thwaites
- Prediction of transition location according to Granville
- A fast integral method (lag entrainment) for the turbulent boundary layer
- Drag-calculation according to Squire & Young formula

For every application, some care is needed in the exact formulation of the design problem. This Is
illustrated in fig. 7. Given the basic gistribution (a) and define the following design problem:

H_ - 0.50 Ree - 10.10
maximize : C1
subject to : Cp I > -2.0

(cy - > 0.95
change only upper sua c7 distribution (Cp fixed)

This formulation will result In the unrealistic dIltribution (b), in itself a perfect solution of the
defined problem. The following, slightly different formulation for the same free stream conditions will
do far better:

maximize : C1
subject to : Cp > -2.0

( -P Cp ) < 0.2
change only upper surfacel stribution (Cp fixed)

Then result (c) will be obtained. Although, it milft be necessary to adjust a few times the constraint on
(Cp - Cp ) In order to drive the separation position-closely to 0-5 of :h= chavr.teThe 5 T 9 erurca af cth. yreent deslgn procedure will be discussed on the basis of some typical
examples, presented-below.

5.2. Medium speed natural laminar flow condition

The intention is to investigate possible lengths of laminar flow trajectories for a thick (18%)
cedium speed (tf, - 0.65) airfoil, To start with, the geometrical r6quirement of t/c - 18Z has to be
translated in a-constraint function for the pressure distribution. A first order estimtion of the max.
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airfoil thickness is obtained by:
1 Cp + Cpl d

tc- 0.5 Cp -M where Cpf - -- C
0

Large laminar flow regions imply low airfoil draq. Then, together with the additional constraint to
maintain subsonic flow In the design condition the Ecllowing problem is formu)ated:

free stream conditions: H. - 0.65, Rec - 15.10
minimize : Cd
subject to : C > 0.50

C1 -

-.Po 'c n 1i: - 0.18
no separation
(transition free)

Fig. 8 presents the solution for this problem. A quick, first order solution was obtained with a simple
representation of the pressure distribution (broken line); a linear interpolation between "free" points
for the front part- and a quadratic interpolation for the rear part of the airfoil. Then-the
representation was refined, using the aerodynamic shape functions discussed above, resulting in the full
line.
This case study showed that:

The design domain contains several local minima and some different start Cp-distributions were
needed to arrive at the final solution.
Approaching low drag values, the cost function C becomes "flat" and so sensitive to numerical
irregularities. Numerical irregularities are easily introduced because the pressure distribution is
discretized as input for the boundary layer calculations.

5.3. Low speed high lift condition

The design of single element, high lift airfoils by R.H. Liebeck is well known (see e.g. refs 16,
17). A.H.O. Smith (ref. 17) published some of Liebeck's results for the so-called turbulent roof-top. The
airfoils meet the additional constraints for the flow to remain attached (and subsonic) everywhere on the
airfoil. Then the following design problem ig formulated:
free stream condition: H - 0.10, Rea - 5.10

transition : upper surface x/c Z 1%
(lower surface: x/c Z 0.51)

maximize : C1
subject to no separation

This problem has been solved-by changing only the upper surface pressure distribution for a fixed,
arbitrarily chosen, lower surface distribution. Two solutions have been generated, both depicted in
fig. 9.

a. With a fixed, approximated Stratford type pressure recovery the flat rooftop solution is found (full
line). This compares reasonably well with Liebeck's optimal solution presented in ref. 17,
indicating max. lift for Cp 1 :-2.6 and pressure recovery point at x/c Z 0.30.

b. With the-upper surface entirPly free, the broken line is found, representing a slightly beter
solution than the roof top solution.

Airfoil geometries, inversely calculated, for these two solutions-have also been given in fig. 9. The
geometries have been computed with the method described in ref. 18.
Note: keeping In mind the approximations made for the present representation (for example, only one
branch of the Stratford solution is considered), the above results are not considered to proof that
Liebeck's flat roof top solution-can be improved. However, it may be concluded that, from a practical
point of view, both solutions exhibit comparable high lift capabilities, while solution b has the
advantage of a somewhat less "excotic" geometry.

From this example it Is concluded that the aerodynamic shape functions are applicable for low speed
high lift design.

5.4. Transonic low drag-solution

A typical transonic pressure distribution is shown In fig. 10 (full line). In order to find out to
what extent this pressure distribution can be represented by the aerodynamic shape functions CADOS was
used. With A Cp being the difference between the real and the shape function distribution, the functional
I A Cp d 2 was minimized. The result, designated best fit, is shown in fig. 10 as broken line.
Apparently, the shape functions lack refinement around the shock and in the nose region. To find out how
serious a problem this is, for the practical design situation. A design study has been performed to
improve the drag coefficient at the design lift coefficient. With the best fit as starting point the
following optimization problem was defined.

free stream condition : N,, - 0.77 Rea - 10.10
transition fixed-at : (x/c)u - - 0.05 (xlc)is - 0.10
minimize : Cd
subject to : C. > 0.60

Cm > -0.125
thickness (- 70.5 Cp / I-H) 2 0.10, being the same value as for the best fit (actual

starting-airfoil t/c - 0.11)
The optimized pressure distribution is shown in fig. II, together with the start ("best fit") indicating
a drag improvement of 5 counts.

Then two-possible ways are open to continue the design study.
1. Define a-new target Pressure distribution by adding the differences between beet fit and optimized

distribution to the actual airfoil pressure distribution.
2. Define the optimized pressure distribution directly as the target for a new geometry design.
Here, the latte, approach was followed. In order to find out whether a less refined target will result in
an acceptable airfoil design. Using the inverse airfoil design system INTRAPS (ref. 19), a new geometry
has been generated. The new geometry differs only slightly from the original one. Analyses of both
airfoils with the VGK program (ref. 20) indeed shows an improved drag coefficient for the-new airfoil
(see fig. 12). 

4
lthough the drag reduction is less than expected from the CADOS calculations depicted in

fig. 11;
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three counts versus 5 counts, maybe due to the relative poor raprasentation of the original pressure
distribution. Nevertheless this example illustrates the ability ot the present approach to improve
transonic airfoil design.

5.5. Stable laminar flow

The last example to be discussed here is of a more fundamental character and differs from the design
studies presented so far. It is an illustration of a special application of target pressure distribution
optimization. The problem concerns the definition of the max. lift contribution that can be obtained-with
stable laminar flow over the first 60% of an airfoil. Stable with respect to the instability criterum forEe0
Tollmien Schlichting waves; instability occurs if Ra > I. With the requirement of just sonic conditions

at s/c - 0.60 for 11. - 0.65 and Rec - 15.106. Then the problem definition reads: find the Cp-distribution

1.0 such that- " Cp d s/c is maximum while everywhere
between / c - O ; M l o 0 and s/c - 0.60; lo 1 0 0 suchoo
ReO aproc e o 0em .6 ReO
Re- approaches 1.0 as close as possible; or minimize - 8' p d s/c + 'max (o, - l)d a/c

After a few attempts with different relations for Cp - f(s/c) it was observed that reasonable results
could be obtained with the following relation for the pressure gradient:

dCp - s-L + B(2 + c)N  , where c is a small value, to prevent the s!ngularity at s- 0.
cc

Then, by integration:

Cp - Cp +Aln(-.) + B + C)N N
at c c

Where A, B, c (> 0) and N are design variables and Cp is pressure coefficient at stagnation point.
Three of the design variables are indepent, the fourtf follows from thb requirement of sonic flow at
s/c - 0.60. Fig. 13 shows the results of the above problem. The Cp distribution for stable laminar flow
over the whole region is depicted in fig. 13a, while fig. 13b shows that indeed R ̂  and R e nearly
coincide over the largest part of the region. These results were relatively easily obtainegf

6. Concluding remarks

The application of constrained numerical optimization techniques in the inverse airfoil design
procedure has been investigated. Taking Into account physical flow characteristics, a set of aerodynamic
shape functions has been formulated. It is shown that with these-shape functions a wide class of airfoil
flows is represented. Parametrization of the pressure distribution in combination with numerical
optimization techniques enable the designer to define or improve 2D target pressure distributions.

With respect to the course of the optimization process, the following experiences have been
obtained.
- The aerodynamic design problem is strongly non-linear and exhibits discontinuous derivatives for

object as well as constraint functions. In general, a large number of local minima occur. So, a
straight forward application of numerical optimization techniques which rely on first and second
order derivatives is highly questionable. So far, best results have been obtained with a simple line
search method (SIMPLEX).

- It is more efficient to define a combined object- and penalty function, rather than to bound the
object function by constraints.

- Optimization for minimum drag is hampered by the "flat" shape of the drag function in the design
space, in combination with numerical irregularities.

- In general a large number of icerations will be needed (several hundreds)

Despite the fact that a large number of iterations is not a serious drawback for the present
approach, the procedure is still far from "stand alone" applications on routine basis.

The method, reviewed in the present paper, already has proven to be of significant value for the
airfoil design practice at NLR. It is worth to consider improvements by paying attention to the following
items.
- Smoothing options, to prevent problems with numerical irregularities.
- Splitting of the optimization problem in a number of problems of smaller scale (multi-level

optimization).
- Looking for more efficient routines, taking into account the specific character of the aerodynamic

design problem.
- Scaling of the Independent design variables (The existing version of CADOS offers the user the

possibilities to adjust the step for each variable, but in practice it is hardly possible to
overview the consequences).
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EXPERIMENTS ON VARIOUS TYPES OF AIRFOILS
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SUHMARY

An optimization procedure is described which applies to the design of airfoils able to
satisfy requirements essentially set for transonic flight.
Suitable airfoils are obtained through radical changes of the starting geometry with
little time consuption.
One of the main features of the design methodology is an extensive use of constraints;
it proved to be very efficient both to obtain a good quality of the design and to reduce
the time needed.
Another feature is the use of effective shape functions, which are not aerofunotions
obtained through inverse methods.
The results show airfoils designed to satisfy both a maneuver and a dash performance
requirement.
A comparison of different design approaches is also presented; this is made possible by
the short times required for the design, which includes the optimized deflections of the
L.E. and T.E. flaps.
Suggestions are given for further developments of a "smart" system for airfoil design.

1. INTRODUCTION

The results obtained through the adoption of optimization techniques for the design of
wings and airfoils Justify their use in the industry even if the success of an automatic
design method is not secure a priori and these methods normally require great expertise
/I/, /2/p /3/.
The reason for this is that an automatic design procedure must compound a large amount
of.knowledge to obtain a physically acceptable final solution which meets the actual
operating requirements.
The aerodynamic optimization problem must not be considered as a routine exercise with a
mathematical prcedure; it must in fact manage checks able to produce an actually usable
final result, aloo on the basis of comparisons with already obtained solutions.
Several authors have focused their attention on tie development of effective
modification flrctions: these are the shapes that, when added to the basic airfoil,
permit its iterative modification. When these functions have a well defined effect on an
aerodynamic charaoteristic, they are called aerofunctions and are often obtained through
inverse methods.
Occasionally, the adoption -of this type of modification functions permits the
optimization methods and the inverse ones, that are usually considered mutually
exolusive design tools /4/, /5/, /6/, to be conciliated.
Other techniques have been proposed which pursue the reduction of the number of airfoils
to evaluate during the optimization process /7/. One of them suggests the adoption of
second order approximations of the aerodynamic coefficients /8/.
This work describes an effective tool which modifies an arbitrary starting geometry to
satisfy deigul .quirc=cnt2 typrnjl of the -transonic range. The methodology emphasizes
the use of the constraint functions, different from what has been used by many authors.
An effective use of constraints is advantageous both in terms of design quality and of
less time consumed is described in detail herein.
The shape functions used in this investigation are not obtained through inverse methods,
but have a foreseen aerodynamic effect and retain their effecttveness when applied to a
wide range of problems.
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When showing the results, emphasis was placed on the comparison of the different design
approaches made possible by the use of an optimization procedure. -

2. THE COMPONENTS OF THE DESIGN PROCEDURE

The optimization problem consists of the definition of the values to assign to the
vector of the design variables R so as to minimize the objective function F(R) (OBJI,
while obtaining that the possible constraint functions Gi(R) are (0. The mathematical
formulation of these functions is a responsibility of the designerp who also has to
choose the design variables that govern the geometry. Elements of these functions are
the aerodynamic coefficients, which are obtained through the coupling with an analysis
code.
The selected optimization routine was algorithm CONMIN (CONstrained MINimization) /9/.
This routine is widely used in the structural optimization field, and is used by several
authors for aerodynamic design.
Since the routine permits constraint functions to be used, it sets n limitations on the
inclusion of design controls which can be essential to obtain an actually usable final
geometry. The routine solves the constrained minimization problem by following the steps
described hereafter.
At each iteration "i" of- the miniraization process, the variable vector (m) is updated
according to the formulaX.. X, + wS, where 9. is a unit vector representing a direction
in a space having as many ensions as the design variables, and w defines the
displacement in direction 9.
Three methods for the 6earcA of direction 9 are implemented in CONMIN. If the variables
lay at a point in the space of the design variables where the constraints are not
violated (that is all functions Oi(R) < 0), two methods are employed that use
information on gradients: They are the "steepest descent" (point A in fig. 1) and the
"conjugate direction method" (point B of figure 1); the latter method also makes use of
information from the previous iteration /1/. If one or more constraints are active
(Gi(R) 0) or violated ((Gi(R)>O), Zoitendijk's "feasible direction method" is used
/1/: § is chosen also based on the gradients of-the active and violated constraints. In
Fig. 1, one constraint is active at point C and one constraint is violated at point 11.

The coupling of the optimization routine with an aerodynamic code requires approximation
techniques. The aerodynamic coefficients in fact depend in a non-linear way on the
design variables that are the perturbations to which geometry is subjected during the
modification. These coefficients can be approximated by using the TAYLOR series:

F(X)= F(X0)+VF(XR))X+X .....

where F(.) is the objective function or a constraint function, vF(R,) is the gradient and
Hi(X.) is the Hessian; 6x x-Rx is the perturbation vector.
The design problem is solved by modifying the ge metry iteratively. The aerodynamic
coefficients are linearized and the derivatives with respect to the desikn variables are
updated at each iteration (sequential linear programming) /1/.
A scheme of a linearized problem is shown in figure 2. The maximum change of the value
of the variables at each iteration is limited by the use of "side constraints".
This procedure is used for two reasons: not to impair the validity of the linear
approximation and to face cases in which the objective function of the linearized
problem is not constrained, contrary to what happens in the non linear problem (Fig. 2).
The aerodynamic analysis code plays an important role because it gives the values of the
derivatives of the coefficients w!th respect to the design variables. Baned on these
derivatives, the optimization routine chooses the most suitable modification direction.
The more reliable the aerodynamic code is, the more credible is the design. However, the
design management, namely the interface between aerodynamic code and CONMIN, is fully
independent of the aerodynamic code adopted and represents the true "heart" of the
procedure.
The analysis code solves the full potential equation in subsonic and transonic range
making use of a finite difference technique developed by A. Jameson. This code was made
more complete with the inclusion of the computation of wave drag as a loss of momentum,
across the shock wave, and of a viscous correction (AELFOIL code) /1)/.
This code may obviously be replaced by a more sophisticated one (e.g. EULER SOLVER) /6/.
In the automatic procedure, the design requirements must be "translated" in terms of
constraint and objective functions.
A simple expression for the objective function includes the linear combination of
aerodynamic coefficients (CD, CM, CL, Local Mach) at one or more operating conditions of
the airfoil (n). In genera], the coefficients must be weighted through multiplication

For instance:
OBJ 4 Ki. CL(a.N.) C(51,N )+< .Ch(a , )

1K 4. Machu (eM,.D+K. NachLs.a,N.)
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where the index i defines the operating condition in which the coefficient is used.

Geometric constraints are utilized, some of which serve to control aerodynamic
characteristics in first approximation. For instance leading edge separation stall or
loss of leading edge suction are connected with the value of the ordinates at the
airfoir nose.
The aerodynamic constraints are used to control the values of the aesign coefficients
(typically CL or CM).
The expression used for thu constraints is as follows'

G= I-v)

where V ia an aerodynamic coefficient or a geosetrical parameter, V is a limit imposed
on it, and K is a multiplication factor.
In our exercises a constraint is active if -.Ol<G( )<.O01, satisfied when O(3 )<-.O1, and

violated when O(X)>.OO1.
The multiplication factor K is used to "scale" the just specified values to constraints
set on coefficients and parameters of different nature (aerodynamic rather than
geometric), and which, in general, have different orders of magnitude.

3. EFFECTIVE USE OF -TIlE AUTOMATIC DESIGN PROCEDURE

Our experience tells us that an objective function easy to manage contains only the
aerodynamic coefficients which must be minimized. A real design problem can be fully
formulated only by resorting to the constraint functions.
Some of these constraints, typically the geometric ones, govern the shape: it is of'ten
required that~ a dimension (ordinate, angle, etc), when modified, does not exceed a limit
value suggested by experience, or is forced to attain a pre-set limit.
In the latter case, the constraint is initially violated and, as such, has a large
weight in the assignment of the values to the modification variables. This is true to

the extent that directly controlled aerodynamic requirement- Icontrolled through the
objective function) may be overlooked. To prevent this, ... thus assign the right
importance to the geometrical control, constraints are set on the aerodynamic
coefficients even if they appear in the objective function; in this case, the initial
solution deliberately violates the constraints.
Other aerodynamic constraints are used if there exist specific desigi, values from which
it is not desired to depart. A typical case is the one of the CLe control~ed through the
constraints instead of through the inclusion of terms of the K(CL=-]t) type in the
objective function (CL is the design value).
The use of :onstraints is here preferred to avoid a dynamic assinnement of the weights
(K) to the different terms included in the objective function. If this were not done in
fact, the terms would be numerica-y different from one another, thus they would not
have the same "importance".
Moreover, if terms are added, there is no guarantee that the value of all terms
appearing in the objective function decreases during the optimization procedure.
The describea example emphasizes that the role of the constraints is not only to
discipline the modification, but also to complete the objective function. Besides, the
careful choice of suitable values for the expressions of the constraints permits the

I -

tX
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number of subsequent linear approximations of the problem to be reduced.
Therefore, the refinement of this work makes use of geometrical and aerodynamic
constraints that may be violated in the initial phase of the procedure.
As already said, the value of each of these expressions can be "adjusted" by use of a
multiplication coefficient. For an effective management of the problem, it is convenient
to choose the value of the coefficients so that the expressions of the violated
constraints have values of different orders of magnitude. In this respect it is
essential to ensure that, during optimization, the value of the violated constraints
decreases progressively, so that the risk that different constraints may reach equal
violation values also is avoided. It should also be remembered that the weight of a
constraint is larger the more it is violated.
A concrete example permits the above qualitative discussions to be quantified (this
description reports beforehand some of the results detailed in para 4).
The purpose of the design exercise is to decrease wave drag (CDW(.0020) in a transonic
maneuver condition at high CL ( M=.745 and CL=.855) and in a dash condition (M=.845 and

Cl=.065) for an airfoil having maximum thickness t=5%c.
The initial geometry is a symmetric four-digit NACA 4 modified airfoil. A variant of
this airfoil is searched by optimizing the thickness distribution and the ordinates of
the camberline.
In the objective function:

CDW(eI,M ) + CDW(z2,Mx)

the minimization of CDW is activated in the two design conditions.
The activated constraint functions are several; they are described in detail hereafter.

- Aerodynamic constraints on CL

An upper and a lower constraints are set for each value of CL. To obtain CL = .855
(maneuver), the limits are .8525 and .8575; to obtain CL = .065 (dash), the limits are
.06 and .07.
The initial geometry is chosen at angles of attack at which these constraints are
initially violated; for instance at M=.745 (maneuver) and 

0

1 = 2.4', the airfoil gives
CL=.45, and at M=.845 and *,=-l.3, it gives CL=-.35. This choice was made on purpose to
exploit the design variables to the fullest, as will be discussed later.

Geometrical constraints

Several constraints are used to control the aerodynamic characteristics in first
approximation.
A control is set on the minimum value of the ordinate of the airfoil upper surface at
x=1.25% c (Y(1,25)) to improve performance in terms of leading edge suction recovery at
subsonic Mach numbers. In the initial geometry Y(.25) is equal to .00753, and the lower
limit set during optimization is .0080.
.1 second constraint function is activated to restrict the value of the angle at the
trailing edge: it is thus possible to ensure satisfactory margins between the drag rise
and buffet onset boundaries. The initial airfoil has an angle of 8.86' and the imposed
upper limit is 9.
The thickness of the trailing edge is controlled through another constraint, which
imposes that this thickness remains lower than .0080 in order not to incur in an
unacceptable base drag.

- Otnee aerodynamic constraints

In spite of the presence of a CD wave in the objective function, constraints are
activated on this coefficient to avoid that the geometrical coefficients are the only
violated ones, thus excessively affecting the modification.

All the constraints just described are weighted in the following order:
- aerodynamic constraints on CL
- aerodynamic ccnstraints on other coefficients (CDW in the present case)
- geoetrip cteontraillts
as indicated in the summary table I.
The wide range of values of weighting factor K should be noted.
The choic-) of the order of magnitude of the constraint functions makes the modification
very effevtive since some variables, the most effective ones, are increased, at each
iteration, by a value very close to that permitted by the side constraints.
Fig. 3 shown the significant modification evolution over foue iterations only: at the
fourth iteration the modification varisiles have nearly exhausted their geometry shaping
action.
If the constraints on CL had bpen originally satisfied rather than violated, as much as
forty Iterations would hav been req±ircd tc rcach a Liulon uimilar to the one shown.
From the physical point of view this happens because, with violated constraints on C
the major modification is that of camber while alpha doesn't change much during tke
optimization. On the other end, with satisfied constraints on C1 alpha changes much from
the value required by a symmetric airfoil to the one required by a cambered geometry.
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G= K * (V-V)
V= DESIGN VALUE

CONSTRAINT G K V tde of violated
constraints

HIGH CL
Lower limit .402 1 .45 .8525 10-1

HIGH-CL
Upper limit -.407 1 .45 .8575

!LOW CLLower limit .406- 1 -.346 .06 10-

LOW C L
Upper limit -.416 1 -.346 .07

CDW 2
Maneuver .031 20 .0030 .0014 10-
CDW
Dash 0176 20 .0023 .0014 10-Z

JY (1.25) .0233 1 50 1.00763 1.0080 111

T.E. an I le 06 5 1 88

-thickness -. 07 1 10 1 .0010 1 .00801

TABLE I: INITIAL CONDITIONS

A fast increase in camber is thus slowed down because the change of alpha and the
increase in camber must concurrently satisfy the initial design CL.
This way of using the constraints makes it natural to control the value of the
constraint expressions during the modification; this act-on is extremely useful to
ensure the soundness of the final results in terms of design richness. If some
constraints are noted to become more stringent than envisaged, it is always possible to
modify the weighting coefficients of the expressions. The procedure is not required to
solve the design exercise without checks; it is in fact preferred that the designer
retains the possibility of taking action to remove unforeseen obstacles during the
design development (for instance, a geometric constraint that can be relaxed).
The problem is therefore formulated with a good degree of design completeness, while
man-in-the-loop actions permit this completeness to be maintained throughout the
procedure.
The direct action of the designer may, however, be reduced by resorting to an expert
system for the design of airfoils, as reported in the conclusions.
For instance, after the fourth modification iteration, the values of the expressions of
the constraint functions have been updated, as shown in table I.
It is apparent that the modification progresses as expected. At the beginning, there
were five coistraint expressions > 0 (violated), two of which had an order of magnitude
equal to 10 (see tabl2 I); at this point, only the two CDWs are violated, the order of
magnitude being now 10 . In the following iterations, the modification direction will
be affected mostly by the control of these two coefficients;
As envisaged, the CLs have rapidly reached the design values, even if the dash CL, is
still a little lower than required.
As far us the constraint expressions related to geometrical parameters are concerned,
the one of the ordinate 2n the airfoil upper surface at X/C = 1.25% has easily changed
from positive values (-10 ) to negative values (the requirement is thus met), while the
two other parameters have changed very little.
In this exercise, the control on geometrical dimensions did not require the updating of
the value of coefficients K during the modification development. If the constraint on
Y(1.25) had been mor- dfflejit to =tifthi-r. it w , uuLiun could have been taken by
giving K a value < 50 (or a value >20 to K of the CDWs); this would have prevented the
geometrical requirements from resulting in an excessive penalization of the aerodynamic
behavior at the transonic design points.
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FIRST ITERATION SECOND ITERATION

modification

,modification

THIRD ITERATION FOURTH ITERATION

modification

FIG. 3 AN EXAMPLE OF DESIGN PERFORMED THROUGH A RADICAL CHANGE OF GEOMETRY IN ONLY
4 OPTIMIZATION ITERATIONS. THE DESIGN VARIABLES MODIFY THE THICKNESS DISTRI-
BUTION, THE CAMBER LINE AND THE ANGLE OF ATTACK

G=K-* (V-V)
V=-DESIGN VALUE

F rode Of s~fagni-
CONSTRAINT 0 X K tude of violated

1 1 1 0 1 1 C L 1  o n s t r a i n t a

Lwrl it-.047 -1 .85 .8525

lUpper limit -. 022 1 1 .865 1 .85751

LOW-CL .06___ ______
Lower limit .0007 1l .059 .0

LOW CL ___ __ { tFUpper limit k .010 1 1 .-059 .-07

COW -2
SManeuver .020 20 .0024 1.0014 10

CDW --Dash 018018 20 4 .0023 i 0014 10______

~Y(1.25) 1f.028 6 0 1.00856 1.0080

T..angle -.074 1 5 8.85 _ _ _ _ __I_ _

thickness I-,0704_ 10 _I .000961 .0080 1______

TABLE 11: AFTER FOUR ITERATIONS
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4. THE SHAPE FUNCTIONS

The final result of the modification is strongly influenced by the choice of the design
variables.
Some geometrical shapes derived from the analysis of existing airfoils having specific
aerodynamic -features, cannot be obtained without suitable shape functions.
The shape functions can be classed in two main groups. The first includes the so-called
aerofunctions /4/, /5/1 that is the geometrical functions to which there is associated a
well defined aerodynamic effect.
They are very effective, and a few of them are sufficient to modify the geometry; their
use permits the number of aerodynamic analyses during optimization to be reduced.

These functions, however, are generally obtained through an inverse method; they are,
therefore, tied to a given operating condition and depend heavily on the initial
geometry.

It seems therefore that the

effectiveness of these functions
WAGNER FUNCTIONS cannot be easily generalized.

The search for effective shape
fo--0Slneii/[Sino/2jo2 functions suggested that already

existing airfoils be used /8/,
fnj [(n*16]/In.n1)I whose behavior was close to the

- design specification in some
0Z fit ,X/C respects.

a) Possible shape functions could be the
differences between the ordinates of
these airfoils and the ones of the
initial airfoil (or of any of the

intermediate airfoils).
This solution is interesting, but it

_requires that suitable airfoils be
600 025 00 0'73 1.o available. A database of geometries

X/C integrated in an expert system would
permit the automatic selection of the
adequate airfoils; this leads to a

HICKS-NEHNErFUNCTIONS possible reduction of the aerodynamic
analyses required for the

I.0 13 14 /-) 'O optimization, and to a good quality of

2 - .Is|,(X.
25}

3  the final solution.
,3.1 i[(ffj_.151 A second category of shape functions,
4"1j(a Xf'-35  

) 1 such as those which we studied and
.6used for this work, are less

effective, but their adoption is more

b) 4widespread.
These latter functions are chosen
either because they -ensure a broad

.2 variety of modifications or because
they may lead to shapes that reflect,

S. ,4 _6 .3 1.0 =I/ existing air'oils from a qualitative
viewpoint.
The form of the functions is selected
to address the - modification

I POLYNOULIAL FUNCTIONS qualitatively as desired, while
I tI41

2 .4x1,O quantification Is a task of the
1.0 2.( .SX -1.51 *x)2L opti ization; these functions are

12 13 IM- 50
3

,S5xpS.2 added linearly to the starting

.8 - geometry,
Wagner functions were thence used

variation as far as the shape of the

c) .4 airfoil upper aid lower surfaces are
concerned. However, they cannot be
used at the highest harmonics (n>4-)

.2 because they can cause waves in thegeometry (changes in the sign of the

slope over a--small part of the chord).,2 4 .0 IO These functions are unsuitable to
modify the camberline significantly

FIG. 4 EXA4PLES OF SHAPE FUNCTIONS FOR THE (starting, for instance, from a
AIRFOIL DESiGiI symmetrical airfoil).

ThelHicks-lHenne (idH.) functions (Fig.
4b) and the polynomial functions (Fig.

4c) have a simpler form, which makes
them particularly suited for even substantial changes of the camberline; hence they are
mainly used for this purpose. They are characterized by different curvature towards the



trailing edge: H.H. functions are concave, polynomial functions are convex. The use of
these functions during the optimization permits, in general, the attainement of the
desired behavior in the upper surface portion Just forward of the trailing edge: both
concave and convex geometries are thus obtained, according to the requirements.
Other functions have been derived from the need to reproduce other geometrical behaviors
typical of the transonic design: such as lower surface cusp for rear loading, and
deflection of leading edge and trailing edge flaps.

Other design variables that have been used are the free parameters of the analytical
expressions for symmetrical thickness distribution. In particular, in the case of the
NACA 4 series modified family, the leading edge radius and the location of maximum
thickness proved to most effectively control the solution.
All mentioned functions could be used concurrently in the modification of the airfoil,
but this would give rise to some problems.
A first advice contrary to such a use comes from the expansion of the computation time.
In the design of an airfoil required to operate at high CL, starting for instance from a
symmetrical profile, functions for the refinement of the thickness distribution should
be used only when the geometry has already been cambered enough.
Moreover, a modification using all variables at the same time, "masks" the impact that
each type of funtion has on the geometry.
To have a knowledge of such an impact is on the other hand important because it may
suggest the introduction of new, complementary functions.
The only shortcoming associated to the sequential use of sets of functions is, this
being a non-linear problem, that the sequence in which these functions are used

influences the final result.
Once again, design experience must give indications on the most adequate sequence.

5. DESIGN EXAMPLES

Attempting the study of a case which meets actual flight requirements is an extremely
stimulating condition -or the development and refinement of a system for autonatic
generation of new airfoils. The terms of comparison adopted to evaluate the
effectiveness of the tool were the requirements applicable to a new high-performance
military trainer. Onu of these requirements concerned sustained transonic maneuver under
high g, and -the other sea level dash performance (the formulation of this exercise is
detailed in para 3).
These requirements also represent a very suitable ground for the application of an
optimization procedure because they are in conflict with each other and need a
compromise solution that cannot be obtained with inverse methods.
The design method uses solving techniques that are fully general and can, therefore, be
used not only for the present examples, but also for many other design exercises
involving maximum thickness and requirements different from those dealt with herein.
Two thin airfoils with maximum thickness t/c= 5.5% were designed.
The initial geometry, a symmetric airfoil In both exercises, was radically changed
through the shape functions operating on thickness distribution and camberline.
Design was made with the aim of obtaining drag rise boundaries which include the design
points (M=.745 and CL = .855, M = .846 and CL=.06), applying the criterion not to exceed
20 drag counts of wave drag (CDW=.0020). Shook waves are present on the airfoil during
the design process; the aim is to keep their strength as low as possible. The exercises
were made by using a gridwhich is sufficiently refined for the engineering requirements
(128 circumferential divisions * 32 radial divisions), and calculating drag as a
variation of momentum through the shocks.
Inviscid computations have always been used in the design, while resort to the viscous
correction was made only durng the verification, because the Reynolds numbers of
interest were fairly high (>10 ). This permitted the computation time to be kept low.
The viscous correction demonstrated, in general, that the impact of viscosity on drag
rise is small.
The buffet onset behavior is in first approximation controlled through the value of tle
trailing edge angle; a viscous analysis included in the optimization procedure would in
fact require a significant increase in the computation.time.
Geometrical constraints for the control of the geometry in the leading edge area have
been used mainly to avoid convergence problems of the potential calculation, that are to
be ascribed essentially to the high curvature of the airfoil in this area.
The relatively short time taken to obtain an airfoil capable of meeting the requirements
-favored a series of experiments aimed to compare different design approaches. The
TRANSOI 5.5 airfoil (thickness 5.5%) was designed to concurrently meet the maneuver and
dash requirements-. This geometry (Fig. 5) gives the pressure distributions at the design
points (Fig.6) and the drag rise boundaries (Fig. 7), The latter can be expanded by
using leading edge and trailing edge flaps, the deflect-on Cf -which ij voLblzud
automatically through the optimization procedure.
An alternative approach, considers the flaps already in the phase in which the design
points are chosen; it envisages that the flaps are used to attain the basic airfoil
performance in one of the design conditions.
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FIG. 5 TRANSOI 5.5: AIRFOIL DESIGNED BY OPTIMIZING A SYMMETRIC GEOMETRY, AND THAT
CONCURRENTLY SATISFIES MANEUVER AND DASH REQUIREMENTS

DASH CONDITION MNUE ODTO
H =.846 MNUE ODTO

.CP CLz .064 M. -P H .745

o-1.74 CL4 .855
Q 2.42

FIG. 6 TRANSOl 5.5: PRESSURE DISTRIBUTIONS AT OPTIMIZATION CONDITIONS

1. 0 Theory

0 ~Experibxnt : Re - 9.0 * o6

O X/c t- .16
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.5-

1SICN1 POINTS wind tunnel
limit
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FIG. 7 TRANSOI 5.5: DRAG RISE BOUNDARIES
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Basing on this consideration# another airfoil having thickness 5.5% c, TRANSO2 5.5, was
generated by simply pushing performance ut high CL to the extreme. The aim of the latter
design was to compare its drug rise boundaries with those of TRANSO1 5.5 that satisfied
both the maneuver and dash performance requirement without flaps. TRANSO2 5.5 is shown
if Fig.8; it gives the pressure distribution at the design point and the drag rise
boundaries depicted in Fig.9

FIG. 8 TRANS02 5.5: AIRFOIL DESIGN BY OPTIMIZING THE SYMMETRIC GEOMETRY, AND WHICH
LARGELY SATISFIES THE MANEUVER DESIGN CONDITION

z. CP MANEUVER CONDITION CL
M -- .745

. C L O 1 .0 5
S2.05

o DES10 POINTS

7580 .85 M
FIG. 9 TRANS02 5.5: PRESSURE DISTRIBUTION AT OPTIMIZATION CONDITION AND DRAG RISE

BOUNDARIES
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IO- 0- BASIC AIRFOIL OBTAINED TH1ROUGCI OPTIMIZATION

PROCEDURE

0 - - -AIRFOIL I1TN L. E. AND I. C. FLAPS DEF ECTED,

OBTAINED THROUGH OPT#IIZATION

T~-TRANSOI 5. 5

.555

oN

0 DESI/N POINTS

TRANSO,? 5,5 -- ,, \
• A .80 . 85 .9,0

FIG. 10 COMPARISON OF DIFFERENT DESIGN APPROACHES MADE POSSIBLE BY THE USE OF AN
OPTIMIZATION PROCEDURE
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The concavity of the upper surface towards the trailing edge makes the installation of
the flap deflection mechanism fairly difficult. The computed performance of airfoils
TRANSOl 5.5 and TRANSO2 5.5 is compared in Fig. 10. With deflected flaps, the former
shows better margins of approx .02 Mach in the entire CL range, except for the highest
values, for which the second geometry was specifically generated.
The method adopted permits the drag rise boundaries with deflected flaps to be
determined, and design times are short: approximately one hour for a full design on
Sperry UNIVAC 1100/90 machines. For these reasons it is possible to perform a comparison
of different design solutions, which would be difficult and extremely burdensome with
non-automatic techniques.

The behavior of the polar of TRANS02 5.5 at high CL is am shown in Fig. 11, which
reveals a marked oscillation of the wave drag value. This behavior becomes even more
marked if the airfoil nose is rounded, as demonstrated by an investigation in which the
constraints were ad-hoc values of the differences of the upper and lower surface
ordinates at the leading edge. This investigation was made preserving the performance at
design condition (CDW < .0020 at CL>1.). The design tool is therefore suitable to study
effects of this type, should they emerge during the design or the verification.

C D WrE
.0080- M=. 745

.0040-

INCREASING FIG. 11 AN EXAMPLE Or INVESTIGATION

E. RADIUS USING THE OPTIMIZATION PRO-
CEDURE

.0020- 
ESG

CONDIT ION

.85 .90 .95 1,00 1.05 CL

6. CONCLUSIONS AND FUTURE DEVELOPMENTS

The considered examples covering the design in two operating conditions prove that the
procedure is capable of matching the actual design requirements for airfoils. Some of
them are to be investigated in the transonic wind tunnel.
An adequate use of the constraints also permits the required computation times to be
kept reasonably short.
It would conversely be pretentious to say that the procedure is complete as far as
design is concerned, and that it does not need a refinement. In reality, an automatic
design system is valid if it is managed dynamically, that is if its contents are updated
with information drawn from design experiences made by others or from the solution of
application exercises carried out using the same procedure.
An optimization procedure may conversely be considered the nucleus around which a system
managing the design information is built.
This information required in the airfoil design process is:
- correlation of the 3D design points with the 2D ones: the airfoil design is

normally the first step towards the design of the wing.
- control of the aerodynamic behavior through geometric design criteria (in the

regimes non directly controlled through aerodynamic analyses during the
optimization)

- choice of the most suii I design approach (for instance, considering the flaps);
- choice of the initial airfoil, possibly searching for it in a database;
- choice of the most suited code to use, amongst the available ones, and setting of

the computation parameters;
- effective use of the design method: the attempt was made in the previous pages to

show how an optimization method can be used effectively;
- analysis of the intermediate results of the design process and updating of the

parameters used during the modification;
- management of the verification, in particular if unforecast behavior of the airfoil

is noted;
- comparison between the theoretical performance and the experimental performance of

similar airfoils. Investigation to assess whether there cwn be scale effects.



18.12

The conventional implementation techniques (FORTRAN language) are unsuited to implement
a system for the management of information of this type, which is to be constantly
enriched and updated.
Procedural programming in fact requires that the system be analyzed before modifications
are included; an evolving system is frequently subjected to changes, "nd the time
required to make them operating would be too long.
The system updating time is conversely much reduced if resort is made to a declarative
implementation: rules containing information may be added, removed, modrfied without
worrying that this action may impair the validity of the other information in the system
/12/.
Expert system development techniques permit the system to be built just as described. In

this enviroment an "inferential engine" is implemented that permits automated reasoning
based on the information included in the rules. The rules, in turn, represent the
knowledge base and must be implemented by the specialist who develops the system.
Moreover, resorting to extensive use of a 2D optimization procedure, possibly integrated
in an expert system, is a good way to cut down the number of analyses required for a 3D
optimization.
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RESUME

Los techniques doptimisation numdrique ont Wt utilisdes avec succas & lONERA- pour la d~finition do
profils et A lPAdrospatiale pour la ddfinition do pales-dlh6licoptre. La 116thode do minimisation sous
contraintes utilisde est cello ddveloppde par Vanderplaats. Pour l'optinisation' des profils
d .hlicopt4re, la ndthode do minimization a 6t6 associ6e A un programme de calcul direct Odo l4coulement
tranesonique visqueux. La d6finition do deux profile do pales d'h6licopt~re do 12% et do 9%~ d'6paisseur
relat. 'e a Wt effectude en deux points d'adaptation reprdsentant los conditions do fonctionnenent en
pale aveangante ot en pale reculanto d'un cas do vol davancoment. Les caractdristiques adrodynaniques
ddtormindes expdrimentaloment on 6coulement bidimonsionnel dane la soufflerie SJNA do l'ONERA-confirment
les gains importantuj prdvus par 1e calcul. La d~finition do pales d'h~licoptbre ost of foctude en
associant la mdthode do minimization I une mdthode do calcul des performances du rotor basde sur is
thorie do l'slhlment do pale. L'optimisation do la-position on envergure-de profile do diffdrontes
6paissours relatives-a Wt rdalisde 6I considdrant soit un point d'adaptation, soit deux pointo
correspondent A des cas do vol diffdrpezts. Los rdsultats sont prdsentds pour tin rotor dlh6licoptbre do 8-10 tonnes. Ces deux applications-mettent en 6vidence l'intdrdt du concept d'optinisation numdrique pour
Ia ddfinition de rotors d'hdlicoptlre compte teni des compiomis IL rdaliser entre los diffdrents cas do
vol et du nombre im~ortant do paramltros-et de-contraintes qui doivent atre considdrds.

ABSTRACT

The numerical optimization-methods have been successfully applied to airfoil design at ONERA, and to
helicopter blade design at the Aerospatiale Helicopter Department. The constrained minimization method
chosen is the one developed by Vanderplaats. For the design of helicopter airfoils, the minimization
algorithm and a transonic viscous flow analysis method are linked together. The design of a 12% thick
airfoil and a 9%6 thick aitfoil for helicopter blades has been carried out with two design points, one
corresponding to the-ad ancing blade conditions and the other to the retreating blade conditions in
forward flight. 2 D tests performed in the ONERA S3NA wind-tunnel confirmed the theoretical predicted
gains. The design-of helicopter blaides is achieved through the-association of the minimization method
and a-rotor porfornanco-analysis-method using the blade element theory. The optimization of the spanwise
locations of the airfoils of different -.ickness-to-chord ratios has been carried out with- one or two
design points corresponding to different flight conditions. The method has been applied to the rotor
design for a helicopter of the 3-10 tons gross weight class. The applications discussed in this paper
show the interest of the numerical optimization techniques for the helicopter rotor design particularly

"hen several flight conditions-and many parameters and constraints have to be taken into account.

1 -- INTRODUCTION

Les m6thodes dloptinisation num~rique s'avlrent particuli~rement int~ressantes dams 1e domaine
adronautique 111, lorsque plusieurs-conditions-de fonctionnement sont considdrdes, ot elles pornottent
tine rdduction du temps de conception des divers 6ldmants dtudids. Ces techniques ont Wt appliqudes A
lVONERA et A VAEROSPATIALE Division-H6licoptbre pour la ddtinition do profils-et de pales d'h6licopt~re
en-prenant en compte los nombreusos contraintes-A consid~rer-pour lPoptimisation des rotors. Lee ndthodes
doptimisation nundrique associent une mdthode do calcul directe des performances dune configuration
donnde A tine mdthode do minimisation sous contraintes. Elles permattent do d~finir mu-do modifier des
formes adrodynamiques en so fixant tin objectif adrodynareique et en rospectant des contraintes
a6rodynatiques-et gdemtriques.

L'optimisation de profile de pale d'hdlicoptlre a Wt off ectude-en associant A la- ndthode do minimisation
tine mdthodo do calcul do ld6coulement transonique visquoux et en considdrant detix points d'adaptation
reprdsentant los conditions do fonctionnement en pale avangante et reculante dun rotor en vol
d 'avancement.

Los caractdristiques a6rodynamiques-de-ces-nouveaux profile 6tant connues, lioptimisation do la-position
en enverguro do profils do diffdrcntes dpaisseura relatives a Wt rdalisde en utilisant une m6thode-de
calcul des performances d'un rotor en vol stationnaireo t en vol d'avancement, et en pronant-en compte
deux cas do vole diffdrents.

Pour lea applications prdaentdos, 1e choix des fonctions objectif et contraintes-est prdcis6-ainsi quo
lee variables de ddciaion-rotenues pour of fectuer loptimisation. Les rdsultats obtenus mettont 'on
6vidence tine am6lioration-significative dos-performances des-pales d'hlicoptdre ainai optimiedes.
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2-- migimrSATION SOUlS-CONTRAINTES

D'une manibre g6ntralo, 1e processus doptimisation consiste I d6terminer lea variables do d6cision
(Ez... Xnl qui -Ainimisent une fonction objectif OBJ(R) et qui respectent lea contraintes imposdes

dcrites sous Ia force

GjCX) 4 0 j - 1,..econtraintes d'in~galit6
Li .4 Xi 4 Ui i - l,.,.,n contraintes latdrales aur lea variables do~d6cision

La mtthode de minimisation sous contraintes, qui a 6t6 retenue pour l'optimisation des profilsaet des
pales d'h6licopt~re, est cello d6velopp~e par Vanderplaats [2]. Elle eat it~rative et s'appuie sur Ia
formule do rdcurrence suivante

q -i+ zq
T Ilitdration q conaiddrde, deux 6tapes peuvent Wtr distingudea. La presidre eat la recherche de la
direction de descente sq dana llespace de dimension n. La seconde eat la ddtermination du scaloire e,
module du d~placement A of fectuer dans cette direction. La ddtermination do la direction do descente Uq
s'effectue A partir dea gradients des fonctions 081() et Gj(R) calcul6s par diff6rences finies, en
utilisant diffdrentes m6thodes suivant l'dtat des contraintes. La contrainte Gj (R) 6tant consid~rde

- non active si Gj(R) <-a;
--active si -a 4 GJ(R) 4 b a,b> 0
- violde si b < Gj (R).

Lorsqu'aucune contrainte nest active ou violde la mdthode employ6c dana CONXIN eat la m~thode des
gradients conjuguds do Fletcher et Reeves (yq =-V0BJ(XYq) + 1-IM~B(qj i

IvOBJ(Xq-'i) j
rdlnitialisde toutos lea n+l itdrations-par is m~thode do la plea grande pento Cbq - -v0BJ(7q)). Les
m6tbodes do minimisation quasi neutoniennos DFP et DFOS qui ant -0t6 introduites dans la m~tbodo
constituent une alternative int~ressante (3], et sent utilisdes dana Is plupart des optimisations
off ectu6es. ))ans ce cas, Tq --H VOBJffq), oq1-H eat une approximation do linverse do la matrico-des
ddrivdes partielles d'ordro deux do Ia fonction objectif par rapport aux variables do d~cision.
Lorsqu'une-ou pluiours contraintes-sont actives, la-mdthode des directions r6alisables-do Zoutendijk- eat
utiliseo. La recherche d'une direction 3q adapt~e an cas-otl une ou-plusieurs contraintes sont viol4es,
est 6galement incluso dans Ia m6thodo.

Le ddplacement optimal s0 dans la direction do descento F~j eat ddtermin6 par une approximation
polynomiale. 11 pout correapondre a un milnimum do la fonction objectif dana cette direction ou A une
limitation impoode-par lea contraintes. Vans Ia plupart des cas, trois ddplacoments sent effoctu6s dana
la-direction Yq.

Le proceasus doptimlsation ndcessite donc environ I + q (n + 3) 6valuat Ions dos fonctions objoctif et
contraintes. Le programmo-adrodynamique associ6 A la m~thode do minimisation-doit Wer robusto at rapide
compto-tesu du grand sombre do calculs & effectuer.

3 -DEFTNITXON PROFILS-POUR ROTORD-H LICOPT ERE

Lj'augmentation des vitosos-de croisibre des h6licoptdres-a-ndcessit6 un ddveloppement do profils -pour
rotor principal dans los ans~as 75-80 [4] (5) (6] et leur utilization a Wt facilitdo par V'introduction
des matdriaux composites pour la rdalisation des pales. Can profile d6finis par n6thodes directo ou
inverse ont pu atro plus r6commont am~liords avoc l'utilisation des m6tbodes do d6finition do profile par
optimisation nuo4kique4

3.1 - Processus.4dotimisation

3.1.1 - Programme a~rodynamique

L'optimlsation des profile dtant effectu6e sur los caractdristiquest-adrodynamiques globales et notamment
Ia trainde, il est n~cessaire do prendre en compto Ilinfluesce des offets visquoux dana 1e calcul do
l'dcoulement. La-b4thode d'optimisecion bidimensiosnollo ddvelopp~o-& I'OHERA (7] associe au programme do
minimisation, d~crit au paragraphe P, la mdthoda do calcul directo do l'6coulement tranasonique viaquoux-
18]. E11a r~sout l'dquation compldte du potentiel dcrite sous forms non conservative par I& m~thode do
Carabodian et Korn pour le-f luide parfait et ddtormine lea couches limites laminaires-et turbulontes par
la mdthode intdgrale-de Michel. Les effets visquoux- soot prisaen compte par use technique-do couplage
faible, ce qui exciut tout calcul prdcis sur use configuration pr~sentant des ddcollements importans.
Les calculs soot effoctuds en transition naturelle en utilisant 1e critdrc- do Granville, modifi4 pour
prend~e on compte Ilinfluosce du taux do turbulence extdrieure. Pour un maillage comprenant 5000 points,
10 '.omps-de calcul sur CRAY X*IP 18 eat compris entre 159 et 25s.

3.1.2-- Variables do d~cision

La modification gdorndtrique du prof il pout 6tre offoctude soit do manibro-globale-avom lutilisation
d'une bibliothbque de forces [91, soit Aocal-nqnt c.- ciedIrant doe fouctions do modification

isplyt de s Ze aiolonctions 110].

L'utilisation d'uno biblioth~que do profile pormet de rdduiro 10 nombre do variables do- d6cision A
considirer pour Iloptimlsation ot do retenir los fonctions do modification Ios oleux adaptdos au probidme
poi6. Dane ca cas, pour lea variables do d~cision X (Xi,..Xn). Ien coordonudes du profil soot
d6finies par 7 io + X, ( z-Yo)+ .. + Xn (Vn-Yo) oa Yo est la-gdon6tria-du profil initial. Dana cette
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formulation chaque proftl do la bibliothque (Vt. n) appartient A lespace de recherche do la

solution.

L'emploi de fonctions do nodification analytiques ou d'a6rofonctions pormet d'affiner localement la
ghom6trie obtenue avoc l'approche prdcddento. La gon6trie des profils eat reprdsentho on additionnant
lin6airezent los fonctions de modification au profil initial. Leos adrofonctions, fonctions ddfinies A
l'aide d'un programme inverse pour obtenir un changesent do r6partition de pression donna6, pouvent Otre
plus facilement adapt6es aux optimisations A effeotuer cospto tonu de leur origine a6rodynamiquo.

Los optimisations prdsent6es ont 6t6 effectu6es on consid6rant entre 5 ot 10 profils de base ou fonctions
de modification. Le programme d'optimisation num6riquo bidimensionnelle, qui a tA utilis6 avec succds
pour la-d6finition-do profils d'avion de transport, d'h6lice ot d'h6licoptbre (11], offre un avantage
important sur le m6thodes-inverses de d6finition loraque plusieurs points de fonctionnoment doivent Otre
consid6rds, ce qui- correspond notamment aux conditions do d6finition des profils do pale d'h6licopt6re.

3.2 - D6fin ton des -rofils 0312 et OA309

Dion que leo conditions de fonctionnemont des pales de rotor d'h6licopt~re soient instationnaires en vol
davancemont, le cahier des charges eat exprim6 en-fonction des caractdristiques stationnaires des
profils compte tonu des m6thodes de d6finition disponiblos. L'analyso de ld'couleent sur un rotor dans
diff6rentes configurations de vol a permis d'6tablir des ohJectifs pour Is d6finition de profils destin6s
A dquiper los sections internes et externes des pales de rotor principal. Los sp6cifications retenues
sent lea suilvantes :

- nombre de Mach de divergence de trainde (Mdx) 6lev6 A portance nulle pour caract6riser l
comporteent en pale avanCante d'un cas de vol d'avancement

- trds faible coefficient do moment (jCmI 4-0,01) pour minimiser los efforts de commande de-pas et is
torsion de la pale ;

- coefficient do portance maximale 61evA pour un nombre do Mach compris entre 0,3 et 0,5 ot d6crochage
progressif pour caract6riser In comportenent en palereculante

- finesse 6leve A un nombre de Mach de 0,60 et un coefficient de portance CzvO,60 pour lea conditions
de vol stationnaire.

La n6thode d'optimisation nun6rique a 6t utilisde pour amdliorer leo performances des profils O213 et
O0209 (d6finis-par m6thode directe ou inverse), dans lea conditions de vol d'avancemont compte tenu do
laugmentation de la-vitesse de croisi6re des nouveaux projets-d'h6licopt6re actuellement A l'6tude. Le
probleme d'optinisation a tA formul6 en utilisant pour fonctions objectif et contraintes lo
caractdristiques globales des profils Cx, Cz, Cm et les r6partitions de pression. Le coefficient de
portance-aximale no pouvant pis Otre d6termin6 directeent avec une m6thode de couplage faible, celui-ci
eat estim6 A partir de la-survitesse A l'extrados ou-du nombre de Mach avant lechoc. Pour los conditions
de-pale avanqante, l'optimisation a 6t6 effectu6e pour un nombre do Mach proche du nombre de Mach de
divergence de-trainde du profil -initial pour dininuer le niveau do-trainde ot augcenter le Mdx A CZ - 0.

Le- profil 0312, de 12% d'Apaisseur relative destin6 A 6quiper leo sections internes des pales
dlh6licopt6re, a AtA d6fini pour leo deux conditions -do fonctionnement H - 0,77 at Cz - 0 (premier point
repr6sentant lo conditions de pale avanqante) et M -0,40 et Cz - 1,5 (deuxi~ne point repr6sentant les
conditions-do pale reculante). Les fonctions objectif et contraintes retonuos sent les-suivantes

OBJ - Cxl
contraintes
I Col J 40 ,01
Kroini2 -a a ) 0

e/c 12%

Dane lo processus d'optimisation, la-solution obtenue d6pend des fonctions de modification utilis6es at
pout en outre repr6senter un minimum relatif et non ps la solution optinale recherch6e. Aussi la
probabilit6 d'obtenir la aoilldure solution possible eat augnentde en effectuant plusieurs optinisations
et en utilisant diff~rentes -fonctions de modification. La d6finition du-profil O312 a-6t6 effectu6e en
considhrant deik Atapes. La premi6re optimisation eat r6alis6e avec une biblioth6que de profils do base,
profils d'h6licoptbre dent la loi d'paisseur a AtA nodifi6e-par affinitA pour obtonir l'paisseur
relative de 12%. Log caract6ristiques du profil ainsi obtenu sent ensuite am6liordes dans ue deuxibme
phase en optinsant s6par6ment llintrados it l'extrados avec des fonctions de modification locales.

La figure 1 compare es caractdristiques atrodynaniques-calcultos-du profil OA312 optinis6 A cellos du
profil initial O213 dans les conditions do pale avnnante. Au nombre de Mach de 0,77, In profil O312
pr6sente un choc extrado de plus faible-intensit6 et une survitesse intrados rdduite de 6X-- -0,15.
L'tvolution du coefficient de trafide A portance nelle en fonction du nombre de Mach pour la loi de
Reynolds Re n 8 x M x-10 montre une am6lioration importante du nonbredo Mach de divergence-de trainde
(Wfdx a + 0,03). Do plus le coefficient de moment est rdduit et reste inf6rieur A 0,01 en valour absolue
jusqu'A environ H = 0,77. Les r6partitions de pression des profils-01213 ot OA312calcul6es dens leo
conditions do pale-reculanteoH - 0,40, Cz = 1,50 et Re - 3,2 10' sent prktentes- figure 2. Les
survitesses des doux profils sent mitudes respoctiveent A- 7% do Is corde pour le profil OA213 et au bord
d'attaque pour lo-profil O0312. Le coefficient do portanoe saximale Avalu6 A partir do l'6olution de Ui
survitesse extrados en-fonction du Cz eat voisin-de 1,50-Woer c:. -........ ...-...

iV yrufil OJ'l4-oBtenur6aiise-un-tr6s bon-compromis entre les conditions do pale reculante et deopale
avangante. En effet, il prdsente aux basses vitosses des performances voisines de cellos dueprofil 01213
et en trdnssonique un nombre de Mach de divergence de trainde augment6 de0,03.

La d6fiRition du rofil OA309, de 9% d'6paisseur relative destin6 A quiper leo sections externes des
pales d'h6licoptbre, a 6t6 effectude-avec le mAmne -processes dlopinisation. Dans-co cas lesdeux points
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de fonctionnement retenus sont X 0,82-ot Cs 0 pour le preralor point reprdscntatif des conditions de
pale avanganto et X 0,40 et Cs - 1,1 pour le second point repr~sentatif des conditions de paso
roculante. Los fonctions objectif ot contraintos considdrdes sont les suivantos

003 '. Cxi
contraintes

(!.1 4 0,01
Kpi .-b b >

0/c '9%

Les'caractdristiquos du prof il 0A209 initial et du profil CA309 optimisd sent prdsentdes figure 3 pour
loa conditions de pale avangante. L'6volution du coefficient do trainde A portance nulle en fonctien du
nombro do Mach pour Re - 8-x X x 10' montre quo los deux profils ont des nombros do Mach do divergence do
trainde identiques-mais quo 10 prof ii OA309 poss~de un coefficient do train~e nettement plus foible. La
survitesso Intrados du prof il CR209 a Wt diminude de ~M - -0,19 et la rdacedldration conduisant A 1a
formation d'un deuxi~mo choc intrados A Macb 6lev6 a 6t6 6vitde sur le profil CR309. LWintensit6 du choc
extrados a dgalement 6t6 rdduite-et s position est plus anont. La rdduction do la trainde calculdo A H
0,82 et Cz 0 eat do 20%. La figure 4 prdsente les r~partitions depression dos doux profils pour les
conditions do pale roculante, au voisinage du Cs max. La survitesse extrados du profil CA309 est
infdrieure Acello du prof ii OA209, co qui correspond A une augmentation du coefficient do-portanco
maximale estimdo A 0,05. Le profi. CA309 prdsente donc A portance nullo un coefficient do traindo calce.6
infdrieur A celui du profil CR209 pour un m~ne nombre do Mach do divergence do trainde at ut coefficient,
do portance maximale supdrieur aux basses vitesses.

3.3 - Vdrification-exp~rimentale

Los essais des profils CA312 et CA309 ont Wt rdalisds on 6coulement bidimonsionnel dans la soufflerie
S3MA do 1CNERA en respectant Ita n~me loi do Reynolds Re - 8 x M x 106, ddjA utilisde lors des essais des
profils CA213 ot CR209. Do plus, tous con ossais ont W~ effectuds sur des naquettes de cordes
identiques, ce qui autorise des comparaisons au niveau des rdsultats bruts, non corrigds des effets do
parois do soufflerie.

La figure 5 compare les caractdristiques adrodynaniques, non corrigdos des effots do parois, des prefils
CA213 at CR312. Los gains les plus inportants apportds par 1e prof il CA312 apparaissent dans los
conditions do pale avangante. Ils so traduisont par une augmentation du nombre do Mach do divergence do
trainde do 0,75 A 0,78, par uno diminution du niveau do trainde-avant divergence et par uno rdduction-du
coefficient do moment en valour absolue. Dons los conditions do pale-reculante, los coefficients do
portance maximale-mesurds A M-i6 0,4 ot Re -3,2 106 sent rospectivoment 1,50 ot 1,54-pour los profils
0A312 et CR213. Cepondant 1e Cs max du profil CR312- est momns sensible au nombro de Mach et eat supdrieur
A celui du profil CA213 pour M - 0,3, M - 0,5 ot H -0,55.

Ces rdsultats expdrimentaux montrent quo In prof il CR312 prdsente do noilleuros caractdristiques
adrodynamiques dons lea conditions do pale avangante et do pale roculante. Les amdliorations des
performances prdvues par 10 calcul sent confirmdes par l'oxpdrience notammont en ce qui concerno la
prdvision do 1n divergence do traindo et du coefficient do portance maximale. L'A6valuation do la trainde
eat offectude avec voins do prdcision mais los tondances sent teujours retreuvdos.

La cenparaison des-caractdristiques adrodynamiquos des profils CR209 et CA309 mosurdes A , 'A est
prdsentdc figure 6. Los 6volutions du coefficient do trainde A portance nulle montrent quo 1n -,of il
CR309 possd un-coofficiont do trainde nettosent infdrieur A celui du prefil CA209 jusqu'A M - 0,81 bien
quo los nombros do Mach-do divergence do trainde des prefils CR309-ot CR209 soient rolativement proches,
rospoctivement 0,845 ot 0,85. Pour los conditions correspondant A la-palo reculanto, los coefficients do
portance maximale du prof il CR309 sent supdriours A ceux du profil CR209 pour les nombres-do Mach-do 0,3,
0,4 at 0,50 :l'augmentatien du Cs max eat domaviron 5%.

Les gains de performances calculdes, apportds par 16 profil CR309, sent confirmds par loexpbrience. N'.
rotrouvo n tamnent la r~duction du coefficient do trainde A portanco nulle de 20% A N - 0,82 at uno
augmentation du coefficient do portance naxinalo A X 0,4 (+ 0,07 dans lPexpdrionce ot + 0,05 prdvu par
10 calcul). Par centre 1'Avolution du coefficient do traindo au-del& du-noobre do Mach do divergence de
trainde West pas accessible avec 1C mdthodo do couplago foible utilisdo dans 10 processus
d'optimisation.

La figure 7 montre 1e compronis obtonu pour les profils CR2xx et CA3xx entro les conportemonts en pale
reculanto ot em pale avanqanto, en considdrant 1e coefficient do portance maximale A M 0,4 et 1e noobre
do Mach do divergence do traindo A portanco nulle. Los iso-coefficients do tr~iaiie (Cx - 0,01 et Cx -
0,02) sent tracds dams 1e plan (Cs, H) I igurA 8 pour !os profils OA213 ot CR312. Les zones soobros
moettentoen dvidence los gains qui ent Wt obtenus 15our toutos los conditions do fonctionnenont, pale
roculante, pale avan~ante et vol stationnaire. La figure 9 prdsente les iso-coefficients do trairrde pour
los-prof ils dlextrdait6 CR209 at CR309. Les tigions sombres mettent en 6vidence los-gains qul ont Wt
obtenus avoc 1e prof il 0A309 au voisinago des points dloptimisation. Pour les conditions do
fonctionnosont on vol stationnaire M - 0,60 at Cs - 0,60, les performances du profil CR309 sent
toutefois 16g~roment infdrieures A cellos du pr',fil CR209 tout en restant dams los limites impoides par
le cahier des charges.

3.4 - Perspectives

L'6valuation des fonctions objectif ot contraintes oat gffoctude par en programme adrodynanique
inddpendant, ce qui pornet d'e~visagor dos optimisations do rrofils avec ue mdtbode do ceuplage fort ec
une mdthodo instationnaire.
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L'utilisation d'un programme de calcul do lJ6coulement autour do profils prenant en compte les effets
rvisqueux par une technique do-forte interaction devrait conduire & des calculs plus prhcis Sur des

configurations prdsentant-des d6collements importants. Une-telle m6thode devrait permettre a'am6liorer- l
qualit6 do l'optimisation compto-tenu du cahier des charges imposi pour la ddfinition des profilsde pale
d'h6licopt~re (Cz max, Mdx). La figure 10 pr6sente la comparaison entre les-r6sultats d'essais-et ui
calcul effectu6 avec la-m6thode (123 sur Is g6om6trie rdelle du profil dans la section-ahdiane de ia
maquette, pour des conditions d'essai (H, a. Re) corrig6es des effets de parois. Le fluide parfait eat
dans ce-cas obtenu par r6solution do l'Gquation '_upotentiel coaplet sous forms conservative. La mithode
de couplage fort pronant en-compte le sillage pert do prdvoir-correctement la r~partition do pression
au voisinage-du hord de tuite aussi hien A M O,40 A Cz 61ev6 quo dans los conditions do-pale avangante
HF0,77 ot Cz0. En transsonique, cotte m6thode permet d'obtenir une position de choc et un saut de
pression on bon accord avec llexp~rience.

D'autre part, des au6liorations importantes-pourraiont sans doute dtre rdalisder en prenant on compte, au
stage de la d6finition, los performances instationnaires des-profils. Los progrds rhcents effectu6s dens
la r6solution des Gquations du potential cosplet ot des hquations d'Euler instationnaires permettent
actuellement d'effectuer des calculs bidimensionnels dans les conditions de fonctionnement proches de
cellos des pales d'hAlicoptbre avec superposition des oscillations de tanis ct d'incidence. La figure 11
prhsente lea r6sultats obtenus sur le profil OA312 avec la mthode de fluide parfait (13] et los lois,
H - 0,67 + 0,18 sin p at a - 2,22'- 3,25'sin p, reproduisant lea conditions do vol quo lon pout
rencontrer sur-un hdlicoptdre. Les r~partitions de pression sort coapardes, pour los azinuts + = 600 et
4p - 1200, & la solution stationnaire obtenue avec la mai ndthode pour les-conditions de nombre de Mach
at d'incidence correspondantes (H * 0,827 et a = -0,590). Cette figure met -on 6vidence l'effet
instationnaire on pale avanganto qui se caract~rise par un retard A lapparition de choc intrados at se
traduit par en d~calage du minimum de portance C' = 900 on quasi stationnaire ot 4 '1050 an
instationnaire).

L'utilisation de c~thodes do couplage fort ou de c thodes instationnaires dans un processus
d'optimisation nusrique eat cependant actuellement difficile compte tenu des temps-de calcels importants
qui an r6sultent.

4 - DEFINITION DE PALES DHBELICOPTERE

La ddfinition de pales d'hlicopt6reest effectue en tenant compto dos-performances a6rodynaniques-du
rotor dans-tout le domaine do vol de lappareil considdrd. Las paramtres de ddfinition A optimiser sont
principaleent :

- le rayon du-rotor
- Is loi de-corde ;
- Is vrillagc ;
- le choix des profils
- Ia position-der profils on envergure.

Les progris technologiques-effectu6s grAce aux mat~riaux conposite pernettent une grange libert6 pour
les-gdom6tries do la pale, avec la possibilitA d'utiliser des profils, des formes on plan at des
vrillages Avolutifs on envergure. L'approche cpnventionnelle pour l'optimisation-de ces-diffdrents
param6tres consiste A examiner sdpardnent lVnfluence de chacun dentre eux sur lea performances d'un
rotor, soit A-laide de m6thodas de calceuls, soit A laido d'essais on soufflerie at en vol.

En ce qui-concerne le calcul, la prise en compto de lenseble do ces paraabtres-n6cessite un-grand
nombre d'it6rations de conception qui peuvent Atre minimises on utilisant las m6thodes d'optimisation
numrlqUe. Les h6licopthristes ont montrd -rxcement l'intdrmt de cette approche (14], (15], [1]. A
l'L~rospatiale-Division H6licoptdre, les m6todes d'optimisation de rotor ont 6t6 d6veloppdes an
associant des mthodes-de calculs do performances au programme de ninimisation sous contraintes d~crit
paragraphs 2.

L'optioisation de la position-deo-profils le long de ia pale, prdsent~e dans cat article, illustre les
possibilit6a et lea 'vantages do-ce concept. Le choix des profils st leurs r6partitions le long de IS
pale reprdientent dearparambtres irportants pour la conception d'un rotor : trois profile diff~rents ont
par example t6 utilis6s pour la dtfinition du rotor du Dauphin 365 N (figure 12).

4.1 - Procossus-d'o t misatio.

4.1.1 -Mthode de calcul de performanceo deun rotor

lea 6valuations dem performances de rotor sont elfectuhes on stationnaire ot en vol d'avancement on
utilisant des m thodes-bases sur Is thdorie do l'Aidnent de pile. Pour le-vol stationnaire, Iechamp doe
vitessas-induites par le rotor eat calcul6 A partir-d'une m6thode des anneaux (17]. En vol d'avancement
deux-mod~lespeuvent-Atre utiliss ; le nodile-de Hoijer-Drees et-un nod~le plus Alabor6 has6 sur une
m6thode-tourbillonnaire A sillage fig6. Los applications-pg:sentkei ont tA-rdalis~esen considdrant lea
cas de vol d'avancement at en utilisant le iod~le sinlifi:de14iier-Dree.

Les performances sont Avalu~es an inposant soi. la traction-et la portance our le rotor, soit lea lois do
commande de pas. Le rotor eat supposh isoi6-at Is pale rigide. Las mouvements de battement, do trainee et
de pas sont pri-sen compte-et 10 Aquations-de Is ndcanique rdflssent I'dquilibre des pales an battement
et en-trainee. La-mcthode de rdsolution correspondant A l'orpanigramme prdsentd figure 13-est la suivante

- Udtormination des vitesses et des acc6l rations on tous les-points de la pale
- calcul des efforts-a~odyhaniques ot inertiels-appliqus Sur Is pale ;
- transfert de ces efforts- aux articulationo de battement et do trainde.

!-
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Les trois dtapes sont effectu6es pour chaque azimut et lea moments aux articulations de battement et de
train~e sont d6compos6s on-sdrie de Fourier. Vannulation de ces -coefficients de Fourier, pour la mise en
dqui~ibre du rotor, permet d'obtenir un systbme ddquations non lindaires. Le mouvement de ia pale dtant
sup: 's6 p~riodique, lees inconnues du probl~me sent lea coefficients do ia d~composition en sdrie do
Four-er des angles do battements et de train6e. La rdsolution eat effectu~e par- itdrations successives.
Pour 116valuation des e'forts adrodynamiques, lea coefficients Cz, Cx, Cm sont ceux mesurds-en 6coulement
bidimcnsionnei stationn~ire en soufflerie.

La figure 14 pr~sente ls comparaison calcul-exp6rience obtenue avec lea mesures effectudes sur un rotor
isol6 danala soufflorie Si do flodane, on conaid~rant lea coefficients rdduits do puissance et do
portanre, C et Z

10 iop avoc P Puissance totale
I-p b c P U3  Fz Portance-rotor
2 p Hasse volumique

b Nombre do palo
100-Fz c Corde moyenno
1 p-b-c R. us U Vitosse p4riph6rique
2 R Rayon du rotor

Un bon accord eat mis en 6vidence pour lea puissances et lea portances moddrdes, ot des 6carta sonsibles
mais accoptables sont clonstatds pour lea configurations plus chargdos. Cotte m~thode permet do ddterminer
do manidre fidkle lea performances d'un rotor en vol davancement et son faibie temps do calcul (do
i'ordre dune soconde sur CRAY XHP 18) facilite son int~gration dana un processus d'optimiation.

4.1.2 - Variables do d~cision

Pour l'optimisation do la-position des profils en envergure, lea variables do d~cision-sont lea rayons
limitant lea parties-do pale A profil constant. Le-rayon do d~but do is partie profil~e do la-pale et 1e
rayon du rotor 6tant impos~s A ce stade do is ddfinition du rotor, le probi~ne doptimisation comprond
2n-2 variables A optimiser pour uno base do n profils. La figure lb-prhsente lea diff~rentes parties do
la-pale A prof ii constant et A prof ii 6volutif.La d~finition des variables do ddcision et lea
spdcifications tochnologiques imposont sur los rayons do ddbut et-de fin, not~s (Rdi, i - 1, ni) et (Rf i,
i -1, n), lea contraintes suivantes

Rdi .4 Rfi n contraintes
Rdi+l - Rfi 4 a R n-i contraintos

avec a constante permettant do contr~ler l'dtendue minimale des parties do pale A prof ii dvolutif.

Dana le cas particulior d'uno pale d~finio avoc deux profils, le-probl6me d'optimisation comprond doux
variables do d~cision et trois contraintos (quatre vatiables do d~cision et cinq contraintos pour une
base do-trois profils).

L'optimisation do la position des profils en envergure oat offoctu~e en consorvant 1e vrillage
a6rodynamiqie do is pale pour limiter dana lloptimisation is modification do la loi do circulation. Le
vrillage-gdom6trique oat modifi6 au-cours des itdrations pour tei compte des incidences do portance
nullo dos-diffdronts- profils.

4.2 - 0otimisati-,n en un point

Les-r~sultats prdsent~s con~ernenL I'optimisation-du rotor d'un-h6licopt~re do 8 & 10 tonnes 10l rotor
poas~do un rayon R - 81o et c62prend quatro pales rectangulairos do 0,6-n de-corde. Lea-prof ils-0A312 et
0A309 prdsentdsprdcddesment ont Wt retenus pour 6quiper ce rotor et lea positions do ces-profils en
envergure ont Wt d~finiea par optimisation num6rique :lea doux variables coisid6rdos 6tant 10-rayon do
fin du prof ii OA312 (RI/H) et 1e rayon~ do dd'ut du prof il OA309 WR/O). La rdpartition initiule,
d~terminde-i partir de i'expdrience acquiso sur lea rotors existants, eat Rl/R - 0,8 ot !!2/R = 0,9. Dana
une preiire 6tape, i'optimisation pout 6tre of fectude pour une seulo configuration pour 6tablir des
gains potontiols par rapport A la r~parcition initiale. Plusieurs cas de vol pouvont dtro distingu~s

- vol stationnaire;
- vol d'avan,ezcnt;
- vol em facteur do-charge (virago ou-ressourco stabiliade)
- vol de-mont6e.

L'objoctif A mininlsor eat la-puissant a~cessairo au-rotor p rincipal ;pour lea cas do-vol en virago oa
en rossource is maximisation du facteur do charge pourrait atre comasiddr~e. A titre d'exomple,
l'optimisation do la-position-on envorgute dos-profili a 6td effectu6e pour un cas do-vol d'avancoment A
Valtitude H =0 m, une trainde de fuselage S.Cx = 2,1 ml ot une vitease do, rotation du rotor w 259
ir/mn. La conatante "a" a Wt choisie dgaio A O-pour no pas limiter l'4tendue des parties-do pale A
prof ii 6volutif dana cette-6tudo paiam~trique, effectu~e en fonction-de la masse do iappareil ot do Ia
vitosso d'avamcoment.

La figure 16 mot en dvidence 1P6volution do lardpartition optimalo des profils 0A3l2oet OA309 en
fonctioi do 1a-nasse de Vapparpil pour une vitosso d'avancemnont de 275 km/h. b'augmentation do la
portanco du rotor n6cesaite lVutilisation du prof ii de i2% d'6paisseur relative sur une plus- grande
partie do la pale, compte tenu .les-miilleures caract~ristiques do co prof il A Cz 61ev6.

L16volution do la r~partition optimale-en fonction do is vitesso d'avancosent eat pr~sent6e figure 17
pour une masse d'appareil do 8 -tonnes. Dana co cas, lea variations sont plus faibios lea avantagos
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apport~s par le prof ii 0A309 an pale avangante pouvant 6tre compensds par de moins bonnes
caract~ristiques en pale reculante.

La r4duction de la puissance obtenue avec l'optimisation en un point est trac6e figure 18 en fonction de
la-masse do l'bMlicopt~re et-de la vitesse-d'avancement. Par rapport au rotor initial (RI/R *0,8, RI/t
0,9), lea gains lea plus importants correspondent A la configuration faible masse et vitesse 6levde :la
position optimale des protils-dtant dana ce cas RlIR - 0, 41, RI/f- 0,43.

4.3 --Optimisation en deux points

Les conditions de fonctionnement 6tant tr~s diff~rentos-en fonction des cas de vol considdr6s, le rotor
optimis6 poeut prdsenter des caract~ristiques adrodynamiques peu intdressantes en debars des conditions
d'optimisation. Af in de ne pas privildgier une seulo configuration, la fonction objectif peut prondre -en
compte lea performances du rotor, correspondant A deux cas do vois diff~rents, do la mani~re suivante

ON 3 (1 - n) PI + nP2

avon ?I Puissance n~cessaire au rotor pour le cas-de vol nO 1
P2 Puissance ndresaaire au rotor pour 1e cas de vol nO 2
n Variable do ponddration comprise entre 0 et 1

Loraque n eat 6gal A 0 ou 1, lloptimiaation oat of fectu~e respectivement pour lea configurations 1 ot 2.
Pour n compris entre 0 et 1, 1e rotor est optimis6 en tenant compte des deux cas do vol avec la
possibilit6 d'affecter on poids plus important sur l'un ou l'autre. Cette optimisation en deux points a
Wt mise en oeuvre en consid6rant les deux cas do vol suivants

- Point 1 - Point 2

H - t, H -Omz, V -250 k/h. H - 8t, H 3000 m, V -360 k/h.

Ces configurations, rotor Peu charg6Aa vitesse moddrde et rotor cbarg6-A vitesse dlev6e, imposent des
rdpartitions diff~rentes de profils-en envergure :CRI/R =0,43, 82/f- 0,48) pour le premier point et
(Rl/R = 0,66, R2/R 0,67) pour ic-second.

La figure 19-m.ontre lea rdductions de puissance obtenues apr~s optimisation pour lea deux-points-de
fo~sctionnement consid6r~saen fonction du coefficient de ponddration n. La rdduction do la-puissance-pour
ie-prem',er cas do vol dvolue de--3,9% A -fl-pour respoctivenent n - 0 ot n - 1. La-x~duction de is
puissance pour 10-second cas do vol eat comprise- entre - 3,3% et -5% avon use variation importante des
gainr pour des-coefficients do ponddration infdriours A 0,4. Le neillour conpromis entre lea rdductions
do puissance cbtenues pour los-doux cas do vol, semblo corrospondro A-loptimisation n-- 0,4.

La figure 20-montre l'6voiution des r~partitions optimales des profilsaen enverguro en fonction du
coefficien- do pond~ration n. La r~partition optimalo correspondant A l'optimisation n = 0,4-est la
suivante:

-profil 01A312 jusqu'A - 0,56 R
-profil 6volutif do 01-56 R A 0,66 R
-profil 01A309 de 0,66 R jusqu'A llextrdmit6.

Los performances du rotor optimis6 sont compardes A-cellos du rotor Initial figure 21. La modification do
la position des profila on-envergure-modifio principalement la puissance due -aux-profils qui reprdsonto
environ 30 A 40k do is puissance totale. Cette r~duction oat do -8%-aux basses vitesses et do -13,5% aux
grandes vitosses pour lea deux-altitudes considdrdos. En tenant compto dos-autres termes do puissance,
puissance induite do misc en mouvement du fluido a travors 10 rotor et puissance do fuselage, is
rdduntion do la puissanne-totale A fournir au rotor oat respentivoment -3,4% et -4,8%. 1I. apparait ainsi
quo 1e cboix-des profilsaet do leurs-positions en envergure constituent des parambtres importants pour
l'optimisation des rotors.

Dana Ia conception gdndralo dos h6iicopt~res actuels, lea s do vol en factour -do-charge constituent
dgilement des conditions do fonctionnemont qui peuvent imposer des r6partitions diff~rentes do profila
(utilisation du profil do 12%- d'dpaisseur relative jusqu'A 0,75 Rt ou 0,80 R). be s do-vol avec
naximisation do la-portance dovra donc 6tre intdgr6 au processus d'optimisation.

4.4 - Perspectives

Dana lea applications-prdcddentes, i'utilisation des m6thodes d'optimisation nuadrique permot d'6viter un
grand nombre d'jt~rations do conception pour 1e nboix de lardpartition-dos-profils on enverguro avon ls
possibilit6 do prendreoen compto deux s do vols diffdrents. L'optimisation do Is loi do corde at du
vrilla~e sont U~s A prdsent posaibles avon is c~thode pr~sent~e. Les param~tres do d~finition do la-palo
p;.avent 6tre optimisds simultandment ce qui devrait pornottre d'obtenir & moyen termo des-gains
significatifa par rapport aux rotors actuels. A plus long- torme, l'optimisation des extrdmitda do-pale
pourrait 6tre offectu~e par optimisation num~rique en utilisant lea m6ttiodes tridimonsionneiles
tranasoniques [18).

5 - CONCLUSIONS

L'utilisation-des mdthodes d'optimisation num~rique soest av~rde particulikroment int~ressanto pour lea
d~finitions do-profius ot do pales d'h6licopt~re dana is mesure oa coo c~thodes pernottent d'Aviter un
grand nombre d'itdrations do conception, tout en prenant en compte plusiours conditions do
fonctionnement.
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La m6thode doptimisatior de profile associe une m6thode de minimisation sous contraintes A un prograzmte
de calcul direct do V'dcoulezent transsonique visqueux. Eile a perms de d~finir deux profils de pale
d'h~licopt~re de 12% et 9% d'6paisseur relative en considdrant deux points d'adaptation reprdsentant lea
conditions de fonctiontiement en pale avangante et reculante d'um cas de vol d'avancement. Les
vdrifications expdrimentaies effectudes dans la soufflerie S3MA de l'ONERA confirment les gains
inportants pr~vus par le caicul.

L'optimisation des pales d'hlicopt~re est r~aiis~e en associant la mdthode de minimisation sous
contraintes A tine mdthode de calcul des performances du rotor basde stir is th~orie de ldld6ment de pale.
L'optimisation pr~sent~e de la position des profile OA312 et 0A309 le long de la pale illustre lea
possibilitds et lee avantages des sdthodes d'optimisation num6rique pour rdaliser tin bon compromis entre
lee diffdrents cas de vol.

Les perspectives do developpement envisag~es concernent d'une part l'optimisation de profile de pale de
rotor principal en couplage fort ou en dcoulement instationnaire et d'autre part Iloptimisation des
rotors d'hdlicoptdre en considdrant l'ensemble dee param~tree de d~finition de la pale (rayon du rotor,
loi de corde, vrillage, position des profile en envergure).
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ABSTRACT

This paper describes the experience gained when coupling different aerodynamic analysis codes and optimi-
zAtion procedures. First a simple problem i considered (airfoil of minimum wave drag, analysis by shock
expansion theory) in order to compare the usability of a random search, procedure to that of a gradient
method (COPES by G.N. Vanderplaats). The second one shows a superior performance. Then three aerodynamic
programs are coupled with COPES and tested: 1. Euler space-marching program for bodies of revolution at
supersonic, 2. transonic airfoil redesign method (fictitious gas concept) and 3. multiple airfoil analysis
code for flap position optimization. It can be demonstrated that COPES is a very universal optimization
tool which can be easily combined even with complex aerodynamic codes. Its convergence is good even under
constraints. This is important because the number of analysis calculations is most important for typical
aerodynamic problems of high numerical expense.

I. INTRODUCTION

To solve aerodynamic design problems two principally different procedures might be followed. 1) In some
cases special design methods are available to determine the configuration (e.g. shape of an airfoil)
satisfying the given design objective (e.g. a desirable pressure distribution). Such a design method might
be created by integrating a variation function into an analysis method, and inserting an 1wation proce-
dure to minimize the design objective function following the steepest descend. A. Jameson illustrates
this "design via control theory" by three applications in aerodynamic design. 2) More often the only pos-
sibility is to solve the analysis problem (theoretically or by experiment) many times for more or less
systematic variations of a starting configuration and thus approach the optimum design iteratively. This
is necessary especially for those problems which are too complex for inverting the analysis code into a
design code or which depend on too many design parameters and have to fulfil too many constraints. As long
as the theoretical methods used for this purpose lack validity and accuracy, the experience of the design-
er is necessary to control this iteration process by skilful variation. But if a closed and reliable ana-
lysis code is available, it is obviously useful to combine it with an optimization method in order to find
the best design automatically.

The aerodynamic design by optimization usually shows the following features:

e high number of design variables (e.g. if a surface to be optimized is described by a parameter func-
tion),

* high number of constraints (e.g. thickness, minimum pressure, stability margin), often of nonlinear
character,

* well-defined design objective (e.g. maximum lift or lift to drag ratio, minimum drag, least square
approximation of pressure distribution), nearly-always of nonlinear character,

* existing theoretical or empirical computer codes for the aerodynamic analysis,

* comput tion time (and cost) of analysis often considerably high.

So the main requirements for an appropriate optimization are:

a simple integration of analysis code into optimization code,

* optimization of nonlinear design objective for nonlinear constraints,

* as few analysis calculations as possible.

II. COMPARISON OF TWO OPTIMIZATION METHODS

In literature many different optimization methods a )computer codes can be found, The fundamentals of the
main categories are described by-G.N. Vanderplaats . In the aerodynamic design the applicationof opt'-
mizaticn procedures becomes-more and more important as several papers presented-at the ICIDES-11 demon-
strate. For the design departments of an aero-space company it is necessary to make use of a well-tested
and reliable optimization code which does not need complicate modification of the analysis code. Here two
of such methods are- examined and compared with special regard to aerodynamic problems:

* a random search method (based on evolution theory),
* a gradient method.

Both methods are used to solve an optimization problem which generally can be formulated by:

F(X) is a design objective function which has to be minimized,

Xis the vector (X, X2, ..., Xn) of r esign variables which completely determine the design,

Gj(X) are j = 1, 2, ..., m co--traint functions which have to obey the condition G (X) t 0 (this includes
constraints of design variables).
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I.L Random Search

The random search method under consideration is based on the evolution theory which sometimes is consid-
ored to be an alternative to mathematically derived methods. More or less it is a sbalation of the evolu-
tionary progress in biology. The computer code GRUP-was developed by H.P. Schwofel . Figure 1 presents
different levels of this method.

In figure 1A the simplest level, the 2-level evolution theory, is illustrated. At the beginning there is a

single individual with a set of variables (design variables)

(X, X,, . Xn) (1)

which completely determine its quality

F(X) - fkt(X) (2)

(design objective function). F(X) is to be minimized by variation of the design variables. For that pur-
pose this "parent individual" is duplicated -and mutated. By this mutation the variables and thus the qua-
lity of the "child individual" are changed. Together with the parent individual it is put into a selection
box from which the better one is selected to become the parent individual of the next optimization step.
One important element of the evolution is the mutation i.e. the random variation of the design variables.
GRUP uses the following procedure: At the beginning the input gives maximum step widths 61 which deter-
mine, how much each variable Xi is allowed to be changed. These maximum step widths are multiplied by a
Gauss distribution random number ri of the interval (-I, +l). So the mutation is described by:

Xc,i = 2,i + Si •,r . (3)

Here c describes the child, individual and p the parent individual. In order to improve the convergence,
the maximum step widths Si are adapted during the optimization progress. In the 2-level evolution theory
of figure IA the S. are selected so that, at the average, one of a given number of mutations leads to an
improvement of the dtsign objective.

The simplest extension of the 2-level evolution theory is the mltilevel theory of figure IB: Instead of
only one now more (e.g. 6 in figure IB) child individuals are created by duplication and then independent-
ly mutated. These are put into the selection box together with the pazent individual.

In-the theory shown in figure IC the parent individual itself is not put into the selection box. This cor-
responds to the situation in biology where each individual has a limited life time and normally is not
mixed -with the next generation.

Figure iD illustrates a further improvement towards the simulation of biological evolution: Here of each
generation not only the best individual does survive. Additionally a certain number of the next best indi-
viduals is selected for drplication. In the example of figure ID from 3 parents 9 child individuals are
created by random -selectic... These- are mutated and put into the selection box from which the 3 best are
selected to become the parents of the next optimization step.

The multi-level evolution :ncoiy code GRUP makes use of an improved mutation width adaption derived from
the biological evolution and which is more successful concerning the convergence: The design variables Z -
(X , X, ,..., X) determine the objective function -F(R) to be optimized. So they shall be called "objec-
tive variables", In addition to them the step widths Si of the mutation leading to each individual are
introduced as further- "strategy-variables"):

- S ' ..... sn. (4)

When duplicating and mutating pqnt individuals these variables are duplicated and mutated in an appro-
priate manner (see H.P. Schwofel'"). Thus the mutation width itself becomes an object of the optimization
by-evolution.

The constraints

Gj(X) CO ; j 2,2... (5)

are taken into consideration as follows: all duplications and mutations which violate one or more of the
constraints are removed and repeated until all constraints are satisfied.

For a better simulation of the biological evolution I. Rechenborg
( 4 ) 

developed further higher order theo-
ries, where sexual reproduction (mixture of two or even- more parents) as well as the comparison, selec-
tion, and mixture of whole populations is taken into consideration. These strategies require a large num-
bar of mutations and validations or in other words analysis calculations. As the analysis in aerodynamics
normally needs long computation times they are of no practical interest in aerodynamic optimization.

Example

lo test the applicability of the- GRUP-code for aerodynamic optimization a problem was selected where the
analysis, in contradiction to normal cases, is very simple: Minimize the wave drag of a symmetrical sharp
edged profile obeying different constraints at supersonic flow without angle of attack. By complete line-
arization the pressura coefficient at the contour is

Cp(x) - -2- (6)
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and the drag coefficient is
I D I z

CD a2f Lz d L, 4 Jf (da). dx2
q.nAyI an Xxc X cd(7

- - 0 --- 1r z  d0,

whore z(x) describes the contour, c is the chord length and Ay is the width in eanwise direction orH1or
this eq. (7) exact solutions of minimum drag profiles are known (comp. A. Miele or D.R. Chapman'(63).
E.g. for a required least thickness this is a double wedge profile with its maximum thickness in the mid-
dle of the chord. If the following pressure relation from the shock-expansion theory is used:

Cx+m' sin' + im'2 sin' c (8)

tm - M/1,l ='7H ; r ratio of specific heats, tan T - dzldx), no analytical solutions can be given. The
minimum drag profile,, no longer symmetric to x - c/2. This problem was solved nryrically by H.N.V. Dutt
and A.K. Sroekanth by use of the gradient method CONMIN of G.N. Vanderplaats'

0  
and now shall be used

as test case for the evolution theory code- GRUP.

In order to convert the problem into one of variable optimization, the profile contour is approximated by
the following superposition

& a. + a, P,(E) + ... + a, P,( ) + a, Q(a,, E) (9)

with the nondimensional coordinates

E - and C. (10)

As, according to G.N. Vanderplaats et al
(9) , 

orthogonal polynominals are to be preferred, Legendre poly-
nominals were chosen for the functions Pi(). Q(E) is a linear triangle function with its maximum value
Q - 1 at E - a,. Using the conditions C (E ± i1) - 0 (pointed leading and trailing edge) the coefficients
a, and a, can be derived from the others by a, - -a, -a, and a, . -a, -a.. So in eq. (9) only six coeffi-
cients are free design variables.

Figure 2 shows the optimization progress of the minimum wave drag profile at the free stream Mach number
H, /7 for the constraint

d/l 0. 1

The starting profile contour is given by a parabola of second order (a, - a, - a K a, 6 a - 0;
a, - -2/3 • 0.1). Its thickness d/l - 0.1 is at the mini, allowed value. The corresponding wave drag
coefficient is CD - 0.0380. According to D.R. Chapman , the optimum profile is a double wedge. For
M. - 47 its maximwm-thickness is at x/1 - 0.5641 and the minimum wave drag is CD - 0.0279.

The best strategy found was a (2,20)-level evolution theory (romp. figure 1D). Figure 2B shows the drag
coefficient over the number of analysis calculations which is of more importance than the number of itera-
tion steps (change from one generation to the next). At the beginning there is a wide dispersion of drag
values. It needs 33 analysis calculations until CD is lower than the starting value for the first time and
178 calculations until the best result is reached. But still it is considerably higher than the minimum
and the contour differs from the optimum double wedge. The adaption of the mutation width leads to the
convergence but on the other haid may be the reason for not catching the optimum. As the number of analy-
sis calculations is the main criterion for the numerical time consumption, it is important to know that in
figure 2B only those steps are shown which obey the constraint. In addition to the 200 calculations with
constraints fulfilled there were 100 calculations carried out with constraints violated.

Other examples with different constraints (e.g. the area between upper and lower contour) show a similar
convergence of the GRUP-code. In general the optimization is faster if the optimum is approached from the
unconstrained design area and not along the boundary of the constrained region as in figure 2.

11.2 Gradient Method

G.N. Vanderplasts developed a universal computer code for the variable optimization of constrained func-
tions. It is known under Mgname COPES (Control Program for Engineering synthesis). G.N. Vanderpl~s
gives a short review in while-the details-of-the fundamental theories can be found in his book'.
Here only the most important features shall be described.

COPES includes the optimization code CONMIN
(8) 

(Constrained Function Minimization), the strategy of which
shall be explained for the two-variable case by use of figure 3.

At the starting point X
O 

each component of the design variable vector R is subsequently varied to find the
gradient VF (RF). This comes to be the search direction S' in which for two further design vectors X the
function value F(R) is calculated (compare figure 3A). By interpolation the ,ector R' is found where P
approximately is a minimum in this search direction. Now this procedure might be repeated until the opti-
mum is found. Unfortunately this leads to convergence problems for nonlinear functions F(R). To overcome

afterfrom the gradient and the last search direction by

q .vq + JVpqli/ 1Vq-I , q-1 (11)

This "method of conjugate directions" guarantees convergence towards the optimum of a quadratic function
to occur in at least n iterations (n - number of design variables).

- --
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When the design reaches the vicinity of the constrained region (comp. figure 3B), the search direction is
calculated from the gradient VF of the objective function and from the gradient VG1 of the actve con-
straint. In order to avoid a slow "zig-zagging" along the boundary-a "push off factor (influenced by in-
put) is used to orientate the search vector in the overlap of the fea.t , sector (allowed directions) and
the usable sector (direction improving the objective function). If the starting or another preliminary
design is in the constrained area there is a procedure to find the unconstrained region with best improve-
ment or at least minimum worsening of the objective function.

Each iteration step of this procedure needs n + 3 analysis calculations (one for initial point, n to find
the gradient, two in search direction). For typical aerodynamic problems, where the analysis might be ex-
trely time-consuming, it is obviously not reasonable to forget all the gradient information gained dur-
ing the proceeding steps. For that reason the program COPES uses a more economical procedure:

For the initial design variables Rq the objective function F and the constraint functions Gj are approxi-
mated by a second order Taylor series:

G. (X) - G9, ART Va5+ AfT1i9 AR (13)

Using these Taylor approximations instead of the correct analysis calculation, an improved design is found
by the optimization procedure described above. Thereby the step width has to be limited ill order not to
move too far away from the centre of the Taylor series. Finally now the correct analysis has to be done
for this approximately improved design. These exact objective and constraint function values together with
the preceeding ones are used to determine the Taylor approximation at the new initial design. By this pro-
cedure only one exact calculation is necessary per optimization step and the approximation gets better and
better. Only the "starting procedure" at the very beginning of the optimization needs more calculations
because the complete 2nd order Taylor series requires I + n + n (n + 1)12 points of support. The COPES
code uses a starting procedure which improves the design already during building up the initial Taylor
series. The starting procedure can be influenced by prescribing the starting design variable sets. It can
be drastically shortened by the input of already known results, e.g. from an interrupted optimization or
from similar optimizations with different constraints.

Example

To test the applicability of the COPES code for aerodynamic optimization and to compare it with the evolu-
tion theory code GRUP the example of figure I (comp. chapter 11.1) has been repeated:

Find minimum wave drag sharp edged profile at H, - /! for thickness d/l ; 0.1.

The pressure distribution is approximated by eq. (8) and the contour is represented by eq. (9) where the
coefficients a,, a2, a,, a,, a4 , a, are the design variables. Figure lB shows that, compared to GRUP, the
COPES code needs much less analysis calculations N to improve the design. It should be noted that COPES
not only uses the designs in the unconstrained area ("+"-Symbols in figure IB) but also those in the con-
strained region ("Cx"-Symbols) for the Taylor series and thus for the optimization progress. Already at
N - 40 a result is' gained for which GRUP needs more than 100 analysis calculations (plus about 60 in the
constrained area). The optimum drag value- practically is reached at N - 50 while GRUP does-not converge to
that result. As the drag near the optimum is only slightly sensitive-to the backward position of the-maxi-
mum thickness the best COPES profile still differs a little bit from the optimum double wedge.

While the evolution theory code obviously is of no practical use for typical aerodynamic problems, the
universal gradient method COPES seems to be a useful optimization tool even in combination with complex
and time-consuming analysis programs.

III. APPLICATION OF-GRADIENT METHOD TO AERODYNAMIC DESIGN PROBLEMS

The following examples present the combination of typical comp and time-consuming aerodynamic analysis
codes with the optimization code COPES of G.N. Vanderplaats

t 
l. The main objective of these investiga-

tions-was not to present optimized aerodynamic shapes of common interest. Instead, it was intended to gain
experience in

" what is necessary-to integrate analysis codes into COPES,

" what are the possibilities and limitations of COPES in aerodynamic optimization,

" how often is the analysis calculation necessary depending on the number of design variables and con-
strairts?

III.! Bodies of Revolution in Supersonic Flow

The optimization code COPES was combined with an Euler space-marching method by H. Rieger
( 1 2) 

for the-ana-
lysis of 2D- and 3D-bodies at supersonic flow. The fundamental equations to be solved are the conservation
lawn in int-Erpl f-4-- ty~ -o ly supursonic riows the problem becomes hyperbolic. So, by
use of the balance of flux values across the surfaces of finite volumes, all flux values of one finite
volume layer normal to the stream direction can be deduced from the values of the proceeding layers. This
allows to apply a Runge-Kutta integration method to the flux values in downstream direction.

Although the present method can be used for more general 3D-bods, here only bodies of revolution shall
be considered. These are of special interest because A. Mielef' presents some optimized shapes derived
under special assumptions (linearized potential equation, slender body simplification). To convert tile
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contour optimization into a parameter optimization problem the superposition of eqs. (9 - 10) is used,
whore the coordinate z now has to be replaced by the radius r. Using the conditions C (U - -I) - 0 (roint-
ed nose) and C (E " +1) - B (finite base radius) the coefficients a. and as can be expressed by
a5 - C /2 - al - a, and a. - Ch/ 2- at - a3. So Band six coefficients of eq. (9) are free design varia-
bles. &he triangle function ECU with its maximum at a, was introduced bemuse minimum wave drag bodies
for given least thickness might have a kinked contour (compare A. Miele'

5
'). The-optimization code me.y

use:
design variables: 6 coefficients of superposition eq. (9) and base radius,

design objective and constraints: CL, CD, Cm, rmax/c, A/c' (area of body projection into r-x plane) and
V/c

3 
(body volume).

Example:

To demonstrate the efficiency of the combined code, the following optimization problem was examined:

design-gbjoctiyo: Find closed and pointed body of revolution with minimum wave drag coefficients CD (re-
ferred to actual cross section area).

antraint: Least volume V/c' ' 0.005.
dggigns.ariblea: Under special simplifications the optimum is the Seats-Haack-body without a contour
kink. So the contour is described by eq. (9) without the triangle function (a, - a, - 0), and the coeffi-
cients a, to a. are the design variables.
CoQstaDyalue: H - 3.0.
startnZg.2ian: The starting contour is a parabola with the thickness 2 r /c - 0.1 and the volume
V/c' - 0.00419 (a, - a, - a, --0, a, - -2/3 , 0.1) shown in figure 4 (above righY$

For this starting design the computational grid was selected fine enough to give reasonable accuracy con-
cerning the wave drag. The corresponding pressure distribution is shown on the left side. The integrated
wave drag is CD - 0.07289.

Figure 5 presents the optimization progress of the design objective CD and the constraint V/c'. In order
to save computation time, at the beginning the analysis code was run with a coarser grid and later contin-
ued with the fine grid to find the best design. This is the reason fox the jump of CDfrom design N - 29 to
design N - 30.

The steps N- I to 9 are small variations prescribed by-input to establish the gradients at the beginning.
From N - 10 the COPES code is free to find its way to the optimum. Increasing the body volume, which is
too small at the beginning, leads to a growing wave drag. From about N-- 23 the volume is in the feasible
area and the drag is decreasing again. The last coarse grid design is already near the real optimum so
that the final fine grid optimization is slow.

In figure 6 this optimum body is compared to the Sears-Haack-body which is the optimum under the assump-
tion of a linearized potential equation and slender body simplifications. For H - 3.0 there are some dif-
ferences. For H - 1.5 the above mentioned assumptions are violated less and so the present method optimum
is much nearer to the Sears-Haack body.

As the Sears-Haack body has a vertical tangent and therefore a small cubsonic flow area at the leading end
trailing edge, it cannot be calculated by the present Euler space-marching method. At H - 3.0 some modifi-
cations were possible to get the drag value nevertheless. It is considerably higher (3,6 %) than for the
best design found even with the restrictions implied in the superposition formula.

111.2 Airfoils-in Transonic Speed

Formally the simplest way to design an- optimum transonic airfoil is to combine an optimization code with a
reliable analysis program. Thus, indirectly a transonic design code is creaS There have bean many suc-
cessful investigations of this kind (e.g. by R.H. Hicks, G.N. Vanderplaatst l). Furthermore-this, co-
dure has alco been applieA.o 3D-wing desisn with good results (e.g. by R.H. Hicks, P.A. Henneffly or
G.B. Cosentino, T.L. Holst'~l)). Here another way shall be examined: There is a "redesign-theory" availa-
ble which, by use of the fictitious gas concept, modifies existing airfoils in such a way that the result
automatically is shockless. Some of the input parameters of this method can be used as design variables to
find a profile which is not only shockless but also an optimum with respect to a certain objective and
fulfils given constraints.

The details of the fictitious gas method are described e.g. by H. Sobieczky
(16)

. So here only-a short re-
view shall be given. For an eisting reliable amulysis algorithm for isentropic irrotational gas flow the
density-velocity relation p(V) is modified in .ach a way that the resulting basic partial differential
equation to be solved becomes elliptic in the entire velocity range. The isentropic flow-relation

1 e 1[ (V ,,l/(l)C14

p sen tr (14)

(*: critical condition) ensures an elliptic type-only up to the critical speed, V < a*, while for V > a*
the equation becomes hyperbolic. The elliptic type can be gained also in the supersonic range if, in con-
L.'LIauLit to Lhe physical reality, the ieantropic flow relation is changed as follows:

f(P/P*)isentr. ;V 4 a'

( T)fictit. [l(V/a*)
P
, 0 < P ( 1; V ;! a*. (15)

P - I means pV - const. which leads to parabolic type while P > 1 still gives hyperbolic type equations.
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The fictitious gas according to eq. (15) leads to a purely elliptical flow around the airfoil where the
transitioa from sub- to supersonic (if there is a supersonic region at all) takes place without a shock.
The result of this calculation is an exact one in the subsonic flow region. Inside the supersonic region a
fictitiovr supersonic flow problem is solved which ensures conservation of mass and momentum globally.
This is iiportant for the subsequent calculation of the real supersonic dcrain, as it ensures that:

9 taking the flow values at the sonic line as boundary condition, the supersonic flow region can be
designed by use of the corect isentropic relation, provided there are no limit lines,

* there is a streamline in this supersonic region connecting the on- and the offset point of the sonic
line,

a slope and curvature are continuous between this streamline and the adjacent original contour.

If the contour in the supersoidc region is replaced by this special streamline, the result is a modified
shock-free airfoil. The mass flux across the sonic line is the same for the fictitious and the physical
flow. On the other hand the density for the physical gas is lower than for the fictitious one (figure 7);
so the physical supersonic region is larger than the fictitious one. This means that the modified contour
nust be below (on the average) the original one.

The computer code by H. Sobieczky which is used hero, uses the code FL06 of A. Jameson for the solution of
the fully potential equation. The modifications necessary for the fictitious gas are done by H1. Sobieczky.
The supersonic region is designed (beginning at the sonic line) by use of characteristics in a rheograph
plane (method by H. Sobieczky). For he valuation of the resulting airfoil a boundary layer calculation
and a final analysis (now physical gas in whole flow field) of the modified profile plus displacement lay-
er has to follow. In the analysis mode the program uses the original code FL06 by A. Jameson and a bounda-
xy layer calculation by M. 11andanan (method by J.C. Rotta with shock-boundary layer interaction by
G.R. Inger).

The optimization procedure uses a specie strategy which always gives shock-free airfoils and therefore
needs no shock-boundary interaction code. By-use of figure 9 it can be described as follows:

* starting contour is an existing airfolL to be optimized,
s the -displacement thickness is estimated and added to get the "displacement contour",

the "displacement contour" is varied by a modification function depending on the desipn variaoles,
the fictitious gas redesign calculation is performed to get a new shock-free "displacement contour",

a a boundary layer computation follows to find the final contour of optimization step,
* all design objectives and constraints are calculated,

new design variables are found-by optimization code.

The optimization code may use:

design variables: up to 55 parameters for contour variation, the fictitious gas exponent P of eq. (15),
the angle of uttack,

design objective ana constraints: CL, CD, Cm, CLICD, tmax/c (max. thickness), tTE/c (trailing edge thick-
ness), Cp,min..

Example

Figure 10 shows an example of the starting design and the best design found by the present optimization
using the fictitious gas method. The specifications are:

dQigo. 0eCtiYe: CL/Cn shall become a maxlmum.
cQfatrajois: Maximum thickness 'Ic t 0.144, trailing edge thickness 0.001 4 tnF/c 4 0.005.
gig-y.ariables: Six-parameters'n the upper contour modifiation function (test constant).

odna Ylue : H - 0.76, Rec - 19.10', a - 0.5. sartiogaogigu: DOA7-airfoil with a special set of
iritial design variables.

The left side of figure 10 shows the contour (displacement and wall), the characteristics in the super-
sonic region, and the pressure distribution of the redesigned (aiready shock-free) airfoil at the first
optimization step. As figure 11 illustrates (N - number of analysis calculations), the initial CL/CD-ratio
is 39.7 and the constraints are fulfilled.

Th steps N - 1 to 13 are iall variations prescribed by input to establish the gradients at the begin-
ning. The effects are too small to be seen in this figure. From N - 14 the optimization code is free to
find its way to the optimum. It is beginning with good improvements of the objective allowing the con-
straints to be violated. Then the constraints are directed into the feasible region again with some dis-
advantages to the objective. The final design after N - 72 steps shows an improvement of 12 % from
CL/C D - 39.7 to 44.5. The right side of figure 10 illustrates that the improvement results from the in-
creased lift while the drag remained constant.

As a large number of additional test calculations shows, the present program is a powerful tool for the
design of transonic airfoils for different purposes. It is very easy to redesign existing profiles with
respect to new objectives and constraints (e.g. now lift, Hrh-ntrumb- or ,.). it can be ex-
tcndd to ir:laud the off- asign behaviour and be applied to 3D-redesign methods.

n1.3 Multi-Element Airfoils

The optimization of multi-element airfnils is a very complex problem because not only the contour of the
elements but also their relative position has to be variated. Furthermore such a variable geometry airfoil
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has to be designed for different flow coli'ions. There are some successful efforts of multi-element air-
foil optimization (e.g. by H. Schwarten" '), but the number of analysis calculations is always high. So
there was the idea. to-solve the problem'by an alternate optimization concerning the relative position pa-
rameters and the contour. This paper only deals with the optimization by variation of the position para-
meters.

Per that vipose the COPES-code was coupled with the subsonic multi-element airfoil analysis code PSH by
K. JacobtI O,(1

9
). As the main interest of this paper concerns the optimization procedure, only a rough

survey of the PSH shall be given here. Three different flowfield elements are used: the inviscid outer
flow. boundary layers, and dead-air regions with the fluid almost at rest. The solution is found by itera-
tion. First the potential outer flow is calculated for estimated boundary layers and dead-air regions
(simple shape, pressure constant in three control points), followed by a boundary layer calculation. Then
the estimated separation points of all airfoil elements are moved from the trailing edge forward, until
they are consistent with the boundary layer result. Compressibility is taken into account by a simple rule
modifying the pressure distribution.

The optimization program (combination of PSH and COPES) may use:

desipn variables: Three position parameters for each flap (x, y-coordinates and deflection angle q).

design objective and constraints: CL , C Cm , CL/CD, Sk/c (width of each slot k), dk/c (overlap at each
slot k), Cnmin - (minimum pressure coelf. of each element i), some other constraints to prevent varia-
tions in re ions %lere the analysis gets wrong.

Example

Figure 12 shows the starting~desigu and the best design of a flap position optimization. The contour geo-
metry of the two-element airfoil DOA5 is kept constant. The specifications are:

desig.objessiy : CL should become a maximum.
desigmayariablgg: x, y-coordinates of a flap fixed point in main coordinate system.
consrait: slot width s/c 0.01.
cgnsiant-.alues: M - 0.1, Rec - 5 • 106, a - 106, flap deflection q - -40*.

As the design objective CL in this case depends on only two design variables, the optimization procedure
can be graphically illustrated. Figure 13 shows the lift coefficient CL in the area of interest for the
flap fixed reference point. It can be seen that the reference point has to move from the starting position
(starting design of figure 12) to the constraint line slc - 0.01 nearer to the main-element.

The same situation is shown again in figure 14 but now in form of iso-lift lines. The optimization path
found by the COPES-code is also indicated. After the first 3 analysis calculations (to find the initial
gradient) COPES was free to find its way-to the optimum which was reached after totally 30 analysis calcu-
lations (plotting the iso-lift lines of course needed much more). The lift coefficient was improved from
CL = 2.5 to 3.6 (45 %).

Other examples of flap position optimization (transition and- deflection angle) for three element airfoils
were similarly successful to find the optimum provided by the PS analysis code. As it turned out that PSH
loses accuracy when the slot width becomes smaller, it was decided first to deal with that problem. Never-
theless COPES has proved to be a very good tool for this problem.

IV. CONCLUSIONS

Using different complex aerodynamic analysis codes it has been demonstrated that the universal optimiza-
tion program COPES (gradient method) of G.N. Vanderplaats is suitable for typical constrained aerodynamic
problems. As it takes care of reducing the necessary number of analysis calculations in a particular man-
ner, it meets the demands of often numerically time-consuming aerodynamic programs. Due to the slower con-
vergence random search routines, like the one examined here, should be restricted to problems where the
analysis is easy to get.

The presented examples provided useful tools for body shape optimization at supersonic speed and for
transonic airfoil design. It was possible to find optimum flap-positions of multi-element airfoils, limit-
ed only by the accuracy of the analysis program. The-experience gained by-these examinations is encourag-
ing to use the COPES-code whenever aerodynamic optimization is demanded and a reliable analysis program
with continuous solutions in tho design area is available.
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RESUME

ba mdthode d'optimisation d'ailes en transsonique pr~sent6e rdsulte de l'association d'un programme de
minimisation sous contraintes, d'un code adrodynamique direct performant, et d'une technique de modifica-
tion de forme. Les possibilitds d'optimisation par rapport aux coefficients adrodyramiques globaux d'une
aile sont prdsentdes. Une m6thode Vestimation du coefficient de train6e en fluide parfait est recom-
mandde. Deux applications de la-mdthode d'optimisation en mode quasi-inverse, en visant une r6partition
de pression donnde, sont ddcrites. L'une est llad~ptation de la partie interne d'une aile d'avion de
transport, probldme pour lequel l'optimisation est une approche bien appropri4e en raison du caractdre
fortement tridimensionnel des ph~noodnes transsoniques, et de la ncessit6,de respecter des contraintes
d'avionnabilit6. Un autre exemple, la modification d'une voilure de quadrirdacteur pour rddunre les per-
turbations causes par 1'installation motrice, montre que les-probldmes d'interaction entre l'aile et les
autres conmposants de l'avion peuvent aussi Atre abordds par optimisation numdrique.

ABSTRACT

The numerical optimization-method for wings in transonic flow-presented in this paper associates L cons-
trained minimization program, a fast direct aerodynamic code, and a shape modification technique.
Possibilities of optimization with regard to the total aerodynamic coefficients of a wing are shown. A
method for estimating inviscid drag is recommended. Two application cases of the optimization method in
the quasi inverse mode, by aiming at a given pressure distribution, are described. One is the adaptation
of the inner part of a transport aircraft wing, a problem to which optimization is a well suited
approach, considering the highly three-dimensional phenomena involved, and the necessity of respecting
constraints related to the aircraft design. Another example, the modification of a four-engined jet
aircraft in order to reduce perturbations created by the-propulsive-system, shows that interference
problems between the wing and other components of the aircraft can also be approached by-numerical
optimization.

1. INTRODUCTION

Le Vdveloppement de mdthodes de ddfinition tridimensionnelles adaptdes A la conception de voilures
s'avdre particuli6rement n6cessaire-en transsonique, compte tenu de la complexitd des phdnom&nes tridi-
mensionnels non lindaires qui doivent Otre-pris en compte.

Les mdthodes doptimisation num6rique (11 (2] prdsentent, sur les approches indirecte et inverse, l'avan-
tage d'assurer un contrdle de la gdom6trie. Dans ces mothodos, 1'assoclation d'un code de calcul direct
de l'dcoulecent et d'un programme de minimisation sous contraintes permet de-modifier une voilure donnde
en se fixant un objectif adrodynamique et en respectant des contraintes a6rodynamiques et gomtriques.

La mdthode d'optimisation num6rique tridimensionnelle ddveloppde A l'ONERA-en-collaboration avec l'A6ro-
spatiale fait appel A deux programmes de minimisation sous contraintes diffdrents. Les fonctions objectif
et contraintes adrodynamiques bont dvaludes par un-code performant de calcul de 1'dcoulement transsonique
autour d'ailes. La-modification de la 4domtrie est effectude A partir d'un systdme industriel de concep-
tion de formes.

Trois applications sont prdsentdes. La- prenibre est le cas-d'une axle rectangulaire de grand allongement
ddfinie A partir d'un profil unique, ce qui permet d'effectuer des comparaisons avec une m6thode d'opti-
misation de profil. Le deuxi6me cas est l'optimisation de la partie interne d'une aile d'avion de trans-
port, c'est--dire un problme fortement tridimensionnel pour lequel les m~thodes bidimensionnelles ne
peuvent pas &tre utilisdes. La troisidme application-prdsentde est la modification d'une voilure-pour at-
tdnuer laperturbation adrodynamique-qui r6sulte de l'installation cotrice.

2. METHODE -D'OPTINISATION

2.1. Programme deminimisation sous contraintes

Le code d'optimlsation numzrique tridimensionnelle transsonique offre la possxbilitd de faire appel,
selon le choix de l'utilisateur, A deux programmes de minimisation sus contraintes, l'un CONXlIN ddve-
lopDp4.ar Vandorn L f,1, l'X'ti C 4 4. d 1. bibliothque AU, EO4VAF. Cette double possxbiht4 eat
intdressante dans les cas d'optimisation difficiles-pr6sentant des minima relatifs. Elle perset aussi de
comparer les performances des deux programmes.

Le programme COUN4IN permet de minimiser une fonction objectif OBJ(M) fonction de n variables de ddcision
(Xi, i = 1. n) tout en respectant lesm conditions Gj () i 0 j 1. , m. Les variables de
ddcision Xi qui torment le vecteur X peuvent 6tre borndes (Li 4 Xi £ Ui).
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Le processus d'optinisation est itdratif et s'appuie sur la formule de r~currence suivante

Xq -Xq 1 + O ?q

A Vitdration q, deux 6tapes peuvent Atre distingudes. La premi~re est la recherche de la direction de
doscente Sq qui s'effectue A partir de la connaissance des gradients des fonctions objectif et contrain-
tes, en utilisant diff~rentes mdthodes suivant l'Atat des contraintes (non-actives, actives, viol~es). La
seconde Rtape eat In d~termination, par une approximation polyndojale du scalaire e, module du ddplace-
ment A effectuer dans la direction de descente Sq choisie.

Le second programme de minimisation souls contraintes EO4VAF, issu de la biblioth~que NAG, permet de mini-
miser une fonction 083(X) de n variables sousises aux contraintes

Gli (R) 0O i-i1, ml

Gik j G2k (R) j Gob k = 1,.. m2

G31 () -0 1 -1,. m3

Dana ce cas, de nouvelles variables soot introduites pour ramener lea contraintes d'indgalit4 A des con-
traintes d'dgalit4 Ci et une fonction Lagrangienne augment~e eat ensuite form~e avec lea nultiplica-

N
teursde Lagrange A1i et le param~tre e tel que OBV - 083 + I .AiCi + e I'JI2'

Cette fonction eat minimisde par une m~thode quasi- newtonienne en considdrant 6galement la formule de
r~currence Xq - q-1 + OeSq

Pour lea deux programmes, lea gradients des fonctions objectif et contraintes sont 6valu~s par diff~ren-
ces finies. Leurs performances aont sensiblement dquivalentes dana lea cas de minimisation sans contrain-
to . L'utilisatiom du programme E04VAF slav~re plus d~licate dana lea cas de minimisation sous contrain-
tea compto teno de l'importance-du choix-du param~tre o esor le r~sultat de lloptimisation.
2.2. Programme de calcul a~rodvnamipue

Une optimaisation requiert un grand-nombre de calcols sarodynamiques directs ;ceox-ci doivent donc 6tre
rapides. Hais par ailleors, ii eat primordial pour Iloptimisation quo lea calculs adrodynamiqoes soient
parfaitement converg~s pour assurer une bonne-6valuation des fonctions-objectif et contraintes et surtout
de leurs gradients. La m~thode de calcul d'6coulements tranasoniques autour d'ailes ddvelopp~e par N.
Brkdif (4) satisfait A-ces deux-exigences grAce, notamment, A un algorithme de gradient conjugu6 avec un
pr~conditionnement efficace.

Cette m~thode r~soot V'dquation compl~to du potentiel sinus forme conservative, dana une discrdtisation
par 616ments finis hdxa~driques. La densit6 eat moyenn~e sur lea 6idmenta, imagea do cube de rdfdrence
par les transformations isoparamdtriques, et lea intdgrales sont 6valudes par !a formule dxintdgratnon do
Gauss A 8 points. Le potentiel approchd eat rechorchA dana l'espace des fonctions continues aur le
domaine ot trilindaires-par rapport aux coordonn~es du cube de rdf~rence aur chaque 616ment. En superso-
nique, la-dcnsit6 eat ddcentrde pour stabiisear le schdna. L'algorithme de r~aolution comporte uneboucle
externo non lin~aire traitde soit par une m~thode do point fixe, soit par une m~thode de Newton, et one
boucle interne do-gradient conjugu6 avec pr~conditionnement par la factorisde incompl~te de Cholesky. Uno
condition do glissement eat imposde sur Ilobstacle. La-nappe tourbillonnaire eat une surface de maillago
ot eat imposd on saut de potentiol constant sur uno ligne y - cte, 6gal A la circulation dana la section
considdrde. Le ;aaillage eat g6n~rd par one mdthode d'interpolation transfinie, suivant une topologie en
H-H.

Avec une mdthode adrodynamique donnde, Is prdcision des calculs ddpend principalement de la finesse du
maillage et do degrd do convergence. Hais- one convergence poussdo sur un maillage fin eat co~teuse. Pour
l'optiraisation il faut privildgier la-convergence par rapport A la finesse do naillage, at in quo leati-
zation des gradients des fonctiona objectif et contraintes soit corrects. Avec la prdsente mdthode, des
temps do calcul do Vordre d'une minute CPU CRA'V-XMP18 permettent d'ottenir des rdsultats parfaitement
convergds sur des maillagos d'environ 13000 points. 11 eat dvident que la prdcision des solutions
obtenues sur do tels maillages ne peut 6tre oxcollente. Lbintensit des odes de choc, en particulier, y
eat sous-estim~e. Cependant one bonne estimation do la valour absolue des-rdmultata W'est pas indispensa-
ble pour l'optimiaation :il suf fit quo la mdthode rondo correctesoot compte des diffdrences entro deux
solutions, ce qui eat possible m~ine sur des maillages trds grossiers.

2.3. Ndthode de modification de forme d'une voiloro

Lea modifications apportdes A uno aile ao cours d'une optimisation sont des combinaisona liodaires do
fonctiona-de modification do base ddfinies a priori. Les coefficients multiplicatifa do coin fonctions do
modification sont des variables do ddcision du procosaus d'oprimisation. Los modifications do formes sont
of fectudos A partir du systdme do conception et de gestion do formes mICA2 do l'Adrospatiaie, dana lequel
tine aile eat ddfinio cosine uno surface biparamdtrde. Cette surface eat un ensemble cartdsien do pavds
dont lea limites soot des lignos isoparamdtriques. Pour un ensemble do a x n pavds, si (ui)i-l,m+i et
(Vj)j-l,n+l soot lea valeora limites des paramdtres sur coin pav~s, di~i,,u e-1 d2.JI.k lea doorde rftp-i

vemaent on u et en v do is composante k sur 1e pav6 (i, j), lea coordonodes d'un point do ce pav6 soot
ddfiinies par des polyn6mos do is forme:
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Les fonctions de modification sent des expressions polyntmiales de la coordonne z ddfinies sur le
paramdtrage de laile A modifier :, ,

Elles excluent done des modifications de la forme en plan. Le paramdtre u 6volue le long des profils
g6ndrateurs, v le long de l'envergure. Les polyn6mes sont factorisas en zs.3 cu, v) S zau . zjv
do tello sorte quoeY ztu ddternine la modification d'un profil dans une section v ucte, et rzJ(v)
r~gle l'extension de cette modification en envergure.

3. OPTIMISATION D'UNE AXLE RECTANGULAIRE

3.1. Ddfinition-du probldme et cas bidimensionnel associd

Le premier problbme doptimisation tridimensionnelle abord6 est dfini de manidre A fitre transposable en
bidimensionnel A des fins de vhrification par une m6thode 2D 6prouvde [5). Il s'agit d'une aile de forme
en plan rectangulaire, sans vrillage, do grand allongement, A gdndration cylindrique A partir d'un seul
profil. Cest un profil reprdsentatif de ceux utiliss par la premidre gdndration dsavions de transport
transsoniques. Lea modifications de forme affectent le profil gdntrateur unique, et sont assurdes par une
base de quatre ailes de m6me forme en plan ddfinies chacune par un profil, soit peaky, soit supercriti-
que. Lea ailes sont repr6sentdes aur Is figure 1. Au cours du processus d'optimisation, les modifications
appliqudes A Paile initiale sent des combinaisons lindaires des 6carts entre chacune des ailes-de base
et Vaile initiale : chaque forme de la base appartient A l

t
espace de recherche de la solution. Le pro-

blkme peout Atre transpos6 en bidimensionnel : il consiste en l'optimisation du profil de Paile initiale
1'aide d'une bibliothdque composde des quatre profils gdndrateurs des ales de la base.

La fonction objectif A minimiser dana le cas bidimensionnel de r6fdrence eat la trainde de pression. Une
contrainte impose une borne infdrieure au coefficient de portance. Le vecteur des variables de ddcision
eat composd des quatre variables assocides aux modifications de forme, et se l'incidence. La figure 2
prdsente les rdpartitions de pression aur le profil initial et sur le profil optimis6, et 1dvolution de
l'objectif au cours du processus d'optimisation. b'optimisation permet d'obtenir logiquement un profil
sans choc, la trainee de pression correspondant, en bidimensionnel et en fluide parfait, A la trainde de
choc. L'historique de la convergence montre que la rdduction de la trainde de pression du profil initial
atteint plus de 90% de la rdduction finale ds la troisi~me itdration.

3.2. Minimisation de la train6e

En fluide parfait, la trainde d'une aile obtenue par intdgration du coefficient de pression A la surfa t
est thdoriquement la somme de la trainde de choc et de la trainde induite. Le terme induit, absent dans
le cas d'un profil, dpend essentiellement de la portance at de sa rdpartition le long de l'envergure, et
ne doit done jouer aucun rble dana le cas triditensionnel considird. D'autre part, i'allongement de cette
aile sans fldche eat suffisant pour que les effets tridimensionnels soient limitds. L'optimisation de
laile-par minimisation du coefficient de trainee de pression avec une contrainte sur la portance devrait
done donner on rtsultat comparable A ceuil de l'¢ptimisation bidimensionnelle de rdfdrence. La figure 3
montre que ce nest pas le cam. Lea rdpartitions de pression reprdsentdes sur cette figure sont calculdes
dana la section de contr6le la plus proche du plan de sym6trie, La rdpartition sur Paile initiale a bien
la m~me allure que sur le profil initial dans le cas bidimensionnel. Le-choc est plus Atald, non pas par
un effet tridimensionnel, mais A cause du maillage n6cessairement beaucoup plus grossier du code adrody-
namique tridimensionnel. Par contre, la solution obtenue par l'optimisation est trts-diff6rento de la
solution dc l'optimisation bidimensionnelle. Le processus d'optimisation eat interrompu par la divergence
d'un calcul arodynamique dana le cas d'une aile prdsentant un rayon de courbure de bord d'attaque
anormalement faible. Malgrd la diminution de la trainde de pression au cours de Ploptimisation, la
solution finale nest pas une solution sans choc.

Des calcouls directs du profil initial, duprofil optimis6 en bidimensionnel, du profil de l'aile opt,-
mise en tridimensionnel, at des trois ailes ddfinies par ces-profils, effectuds A 1'aide des m6thodes
arodynamiques utilisdes pour l'optimlsation 2D et 3D montrent que cstte anomalie nest pas lide A un
phdnomdne de minimum relatif. Le problme rdside done dams l'estimation de l'objectif, c'est-A-dire
l°'valuation de la trainde. Des calculs 3D et 2D montrent encore qus ce problme n'est pas sphcifiquement
tridimensionnel, mais qu'il provient de l'utilisation ds maillages trop-grossiers pour loptimisation 3D.
Le maillage utilisd par le code d'optimisation bidimensionnelle comporte 4991 points, alors que celux de
la mdthode a6ArVnamiqus pour I'optimisation 3D en comporte 12844 dans 13 sections soit seulement 988 par
section. Ce n'esc qu'au delo-de 4000 points, pour un profile que cette-mdthode donne le cla'sement
correct des trois profils par rapport A la trainde de ptession. Un tel maillage conduirait A-plus de
50000 points en tridimensionnel, soit un temps de calcul d'environ 4-minutes CRAY XMP1R8 inacceptable
pour des optimisations qui mdcessitent plusieurs dizaines, voire centaines de calculs directs.

La trainee estimde par intdgration du coefficient de pression ne paut done pas constituer un objectif
fiable pour l'optimisation, sor leas maillages grossiers auxquels il faut se limiter pour des probldmes de
temps de calcul. Une autre mithode pour calculer le coefficient de trainda consists A le ddcozposer en
fluide parfait, en un terse de trainds de choc et un terme de trainde induite, evaluds stpardment par des
bilans de quantit6 de mouvement dans le champ. Dans le cam prdsent, la train6e induite ne doit jouer
aucun r6le dams l'optimisation. La figure 4 montre les rdsultats du cas doptimisation prdcddent traitd
cete fois en substituant comme objectif la trainde de choc 6valude par un bilan~de quantitd de mouvement
dans un domaine entourant le iocA la- trAle4a-da- pre!fi4 y=.c*&c Ar , tuc cient do
pression A la surface de Paile. La %ol'ton obtenue eat cette lois bien une solution sans choc, Le pro-
f i de Paile optimisi en tridimensionnel West pas identique au profil optimis6 en bidilmensionnel (fi-
gure 2). Des calculs par plusieurs mdthodes adrodynamiques-aontrent que la diffdrence de coefficient de
trainde, aussi bien de choc qua de pression, entre ces deux profils eat infdrioure A 10-4, en faveu du
rdsultat tridimensionnel. Westimation de la trainde de choc par un bilan de quantit6 die mouvement semble
done assez fiable, m~me en maillage grossier, pour constituer une fonction objectif d'optimisatlon
correcte.
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La difficultd d'utilisor le coefficient de trainde de pression cosine objoctif est mestionnde par
Cosentiso ot Hoist (6). Dien que le code s~rodynaciquo TWlING utilisd par ces suteurs foursisse, au coins
dams Its conditions d'utilisation imposdes par 1'loptisisation (maillage grossier) , des veleurs absolues
errondos (7], les errouro sont des orreurs do troncature qui nsaffectont pas is juotosso relative des
rdsultats los uns par rapport aux autres (8]. Clest pourquoi, cos auteurs omt-pu utiliser avec succls is
traindo de prossion cocce objoctif d'opticisation. 11 taut copendant noter quo Cosentino et Hoist utili-
sent un osillage do 40 000 points, au lieu do 13 000 avec la prdsente tsdthode, et use topologie on C-Il
mioux adaptdo aux calcuis sutour d'aiiem quo is topologie on H-H. Los rdsultsts ci-dessus sontrent quo,
pour us osiliage dosed, des bilses do quantitd do couvement donnent use estimation plus fiablo do is
traindo quo lintdgration du coefficient do prossion sur laiio, et confircont is recoomandation do Lock
(7] d'utiiisor do prdfdrence is precidre mdthodo pour Iloptimisstion.

3.3. Optimisatiom visant use rdmartition do Dression orescrito

Los odthodes inverses pormottest do difinir use force A partir d'une rdpartition do prossion proscrito.
Lour usage cot rondo ddiicat par icposmibiiitd do contrdie do is gdoc6trio et lo risque d'obtosir des
solutions irrdalistes, ou-db no pas obtonir do solution puisqu'il nWest pas sOt quo, dams 1e cas d'uno
aile en transsomique, le probldme soit bios posd. 11 pout done Atro intdrossant d'utilisor use c~thode
d'optimation nuadrique en mode quasi-invorso, en visast uno rdpartitios do pression inposde. Cola cot
possible en adoptant cozco fonctios objectif use mosure do ldcsrt entre le champ do prossion sur laile
ot 1e chacp do-pression prescrit.

Le calcul d'opticisation prdsentd our is figure 5 vise coo rdpartition do pressios extrados dams Ia sec-
tion do costr6io do Valla i plus-proche do lempianturo. Cotte rdpartitiom cot cello do iailo ddfinie
par 1e prof ii optimis6 en hidimensiossol (paragraphe 3.1). ce qui assure qulil oxisto dams l'espsco des
fonctioms do codification uno solution porcettant d'asmuier is fonction objectif. Ceile-cz est ddfinie
par iaire comprise entro los courbes Kp(x/c) isposdc et couranto, A Voxtrados do is section do costrdio
cossiddrde. Costrairement aux cas d'opticisation prdcddents, ii nest pas ndceosairo dimposor do
contraiste, is rdpartitiom visdo assurant un coefficient do portasco acceptable. Comme 1e montro la
figure tb, is solution obtosue en six itdratioss ost trAm procho do is solution viode. La valour do la
fonctiom objectif est diviodo par 50. La convergence du processus d'optimisation cot tr~m rapido isl
figure 6 indique quo ileosentiol des modifications ost assur6 en deux itdratios seulement.

Tous lea caicuis-d'optimisation prdsentds jusqu'ici ont Rtd effectuis A 1'aide du programme do cinioisa-
tion CONNIN. Dams le cam conoiddr6 ici, is figure 7 comparo leo rdsultats obtesus avec leo programmes
CONMIN et NAG-E04VAF. La convergence des deux caicuis cot tr~m comparable :une vingtaime do calcuis
adrodymamiques outfit pour divisor la valour do l'objectif par 10. Aprds 50 calculs adrodymamiques, la
solution obtemue avec 1e code E04VAF ost ldgdrecent plus proaho do is solution viode. Lo cam prdsentt ici
est us cam d'optimimation sans con~rainte. Dams leo cam comportant des costraintos le choix do certains
param~tres du programme E04VAF pout influencer cossiddrabiemont 1e rdsultat do l'optiinistion ot rend
done l'utiiostiom do is c~thode plus ddlicate.

4. OPTIMISATION DE LA PARTINTERNIPD'UNE VOILURZ, DIAVION DE-TRANSPORT

4.1. Probldme d'omtiiiatios

Sur un avios do transport tranososique, is-partie extorse do la voilure cot dquipde d'un prof il do base
ddfisi par des sdthodes hidimesiosnoleg. Dams la partie interne los phdnoines tridimessionnoim, parti-
culidrecont importasts en rdgiso tranososique, et leo contraintos d'sviommahilit6 roodont le probidme do
conception plus- compiexe. Pour le traitor, use c~thode d'opticisation tridimensiosseilo est bien adaptdc.

Le cam conoiddr6, illuotr6 our is figure 8, cot colui de l'opticimatios d'une voiluro supercritiquo A N
0,82 et Cs - 0,47. Le rdoeau do lignes iso-sombre do Macb extrados reprdsent6 our cetto figure cot cal-
cuid par umo mdthode adrodynamique servant ici do rdfdresco [9] (naililge do 200 000 points emviron).

b'A6couiemest our lPaile intermo comporto, au droit do la casmure us choc supersoniquo-mupersosique qui
devrait pouvoir Atro supprind. Pour compeser is perto do portanco qui rdmulterait do cette modification,
14 secticfi d'emplasture pourrait supporter us 6couloment extrados plus acadi~r6.

Le probidino d'optimisation out abord6 en mode quasi-invers. en visast dccx rdpartitioms de promotes
Kp(x/c) dams deux-seatios do contr6ie diffdrostes situdes A i'einpiasture et 1 20t de lonverguro. Leo
sections de contr~le et los rdgions codif ides donis l'optisisstion most roprdmentdom our is figure 8. Leo
rdpartitiono do pression viodos mont tracdco figure 9 :leo rdpartitions do prosmion do i'aiie initiale
qui lour most muperposdes most caicuides par is c~thode adrodysamique intdgrdc mu code d'optinisation.
Contrairement mu as prddot, le probidmo ost ploinemont tridimosonel ;i'optinisstion vioe des
objeatifs son soeent diffdronts, maim A certaimo Agards oppoods dams leo doux rdgioms considdrdes.
Dams is section 1, i1ohjectif ost d'augconter is portasco par uno modification du mivesu do vitesso A
l'oxtrsdoo. Lo but visA dano is section 2 est do dimisuer iasourvitesse A lextrados qul induit Ia
formation d'un china do forte ii,tenoit aux portancem Aievdoo.

4.2. Caicuim d'optimimation

Los fonctiomo do modifications locales retomues sont ddfisies pout codifier 'a gdomdtrze dams leo deux
rdgioss ontourast leo sections do contrble. Chacuso d'oiieo assure use modification particulidre des
repartitions do preomios A l'oxtrados et lout amplitude ost maximale mu droit des sections do contr6io.
Le respect do is loi d'Apsisseur relative do is voilure cot obtonu en effectuant pour chaque fonction use
bomotbdtie our l'intrado; cette technique permet do no pas considdrer de-rnntraint^ dAnat I- rnf444'
owoptirzisatiom.

Le probidmo pout Atre ahord6 giobalomost en considirant amoco objeatif A ciniiniser is soome des Acarts
entro leo rdpartitioss do presmion cocrontes et vis6oo dams los deux sections do contr6ie aomsiddrdeo, ot
en utilisant leo fopatioss do modification affectast is rdgios 1 et is rdglos 2. Maim dams coo condi-
tions, ii m'avdro impossible d'sboutir A use ojtlnisation stisfaisante, avec 1e programme CONMIN cocce
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avec NAG-E04VAF. .La difficult6 proviont du caract4re contradictoire des modifications visdes dams les
deux sections, et de ce-que ces sections sont trop '%oisines pour que les effets des fonctions de modifi-
cation, centr~es sur celles-ci, sojent d6coupl6s.

Le probidme est rdsolu en ddcomposant le calcul en deux Rtapes successives relatives aux sections 1 et 2.
La premifre optimisation est effectude en considdrant trois a~rofonctions relatives A la section 2 et en
retenant la rdpartition de prossion extrados visde dana cette m~me section commae objectil. L'optimisation
A l'aide du programme de mininisation CONNIN eat efoctu~e en cinq itrations. La solution optimisde eat
prdaentde figure 10. La diminution de la survitesse dans la section 2 a bien Wt obtenue ,de iaibles
tOcarts subsistent avoc la rdpartitiom de prossion vis~e au-delh de 50% de la corde. La r6percussion de Ia
iodification sur Ia section d'emplanture reste faible.

La deuxidme dtape de l'optimisation est effectudo avec comae voilure initiale celle ddfinie dana Is pro-
midre 6tape, c'est-&-dire modifide dan a isesotion 2. Trois-adrofonctions relatives A la section 1 sont
considdr6es et l'objectif retenj est la r~partition do pression visde dans Is mdme section. Les rdparti-
tioms do presion de Ia solution finale, obtenue apr85 cimq itdrations, sont prdsentdes figure 11. LO
bdndfice de la premidro optimisation relative A la section 2, c'est-&-dire la rdduction de Ia surviteaso,
nest pas remis en cause par Iloptimisatiom da la-section 1, qui consiste au contraire en une augmen-
tation du niveau de vitesse. Slil nlen-6tait pas ainai, lo-processus pourrait btre poursuivi par une
nouvelle optiamation de Ia section 2.

4.3. Compara ison -des _carac tdris t iues-adrodvnaiiues do Ila-voilure initiale et-do la voilure--optimisde

Lea calculs adrodynamiques effectuds dana la procddure d'optimisation utilisent des maillages trds groin-
siers. 11 eat done mdcessaire dleffectuer aprds optitisation des calculs directs de Ia voilure initiale
et de la voilure optimisde avoc Ia mdthode mentionnde au paragraphe 4.1 af in de vdrifier que le but a 0t6
atteint.

La figure 12 prdsemte la comparaison des deux voilures sonus la forme do rdseaux dliso-nombre do Mach pour
le m~me coefficient de portance A H = 0,82. Dams touto la rdgion comprise entro 15% et 45% do lVenvor-
qure. la diminution du niveau de survitesse attdnue trds Lenmiblement 1'intensit de l'onde de choc. Des
calculs ont 6galement Wt effectuds pour 6valuor Ilamdlioration~de la-solution A-un coefficient de por-
tance-plus 6lev6 quo 1e Cz d'optimisation et ils comfirment i'amdlioration dos-caractdristiques adrodyna-
miques do la voiluro optimiade dana la rdgion do la cassure de laile.

S. OPTIMISATION DIUE VOILURE DE 0tUhDRIRE~tTEUR rERANrT COMPTE DEn L-EFFET DEn LINSTALLATION MOTRICE

5.1. Problbme et mdthodologie

L'installatiom motrice, mits et nacelles, induit sur l'aile une perturbation adrodynamique qui en ddgrade
lea performances. Le but vis6 ici t!st do prdvenir cc phdnom~me on modifiant la gdomdtrie do Ia voilure do
tollo sorto quo la voilure optimisde pormetto d'obtenir en prdsencode linstallatiom motrice lea carac-
tdristiques adrodynamiquem (ou du momns des caract4dristiques-aussi prochem quo possible) de la-voilure
initiale L. configuration lisse.

Les c~thodes do calcul adrodynamique d'une aile-motorisado en tramasonique sont encore trop co~teusom pour
6tre intdgrdes h umo mdthode doptimisation, Le probl~me pout copondant btre abord6 a l'aide dune
rn~thode adrodynamique do calcul d'une aile liase, en considdrant dana la ddfinition do Ilobjoctif A
minimizer une-eatimation do Ileffet do linatallation-motrice, effectudu a priori.

Dans le cam prdsent, cette-estimation oat fournie par dos-rdsultats expdrimentaux obtenus en soufflerio.
Il s'agit d'un quadrirdactour sur loquel lea nacelles sent support6es par des cits symdtriques. La per-
turbation ddterminde-en soufflerie do part et d'autre do chaque installation cotrice eat repr~seat~e sur
la figuro 13. L'optimisation on-node quasi-inverse visera donc, pour l'aile lisso. des modifications du
champ do proision oppoades A cellem qui mont roprdsentdes sur la figure. L'offot le plus important et le
plus ddfavorable do l'installation cotrice-sur lailo eat laccdldration do l'dcoulement du cdt6 interne
do chaque cAt A l'imtradoa, qui provoque uti choc A environ 20% de la-cordo. Pour s'opposer A co phinomd&-
no, il faut diminuer les-niveaux-et lea gradients-do vitesse dans ces rdgions. Du c6t6 extorno do chaque
mAt, A lintrados la perturbation oat plus faible ot, plus localis~e. A l'extrados, cleat surtout du cdt6
externe do l'installation externo quo la motorisation porturbe ldcoulecent. L'optinisation doit visor
tine accdldration dans cetto rdgion.

Lea objoctifs mont donc ddfinis par des-rdpartitions do pression dana los quatro sections o4l l'ffet do
la motorisation ost maximal. L'extenaiom de cot of Let suivant Ilonvergure n'ontro pam dans Ia d~fini-
tion des objoctifs maim dams cello des zones A modifier par Iloptinisation, commo 1e montre la figure 14.
Los rdsultats expdrimentaux dismoniblesmen donnent pam d'imdicationa attr cotte extension :0110 est
estimdo par des calculs dos confiGurations 11550 ot i&otorisdo par une c~thode do singularitds,

La figure 14 tontre quo leoffet do Vinstallation interne et colui do Vinstallation extorne sont d~coui-
plks : lea zones dinfluence no so recowrent pas. bladaptation do Vaile-autour do chaque installation
pout faire l'objet do calculs doptimisation sdpards et inddpendants.

Do part et d'autre dun cit, Ia perturbation est trAm diffkrente ot parfois opposao ; lea objectifa vis~s
1e seront do m~ne. or Ia c~thode airodynamique, limitde au calcul d'ume ailo lisse, me pout respecter Ia
discontinuit6 du ph6nombno. Il faut donc ddcomposer l'opticisation autour do chaqua ntsltc en ucux
calculs, l'un visant l'objectif M~ini A.. cf'±6 int,.u, autre l'objectif ddfini du c~t6 externo ii y

toj quatre-calculs d'optimisation A offectuor.

5.2. Calcula doptimisation

Weffot de l'installation motrico eat beaucoup plus important et plus complexo A l'intradoa qu'A l1extra-
dos. Los fonctions do modification utilisdoa-dans los calculz d'opticisation sent all nombrodeo huit poir
l'intrados, trois pour l'extrados, plus-une fonction do modification du vrillago local. Toutos no sont



pa2t6 i~spurtatrcau deqa-rn oblbmes n~~domsacon titre d'exenp~le, lafigure 15

i .aide de calculs-bidimensionnels inverses dc mniire-A agir de faqon bien difinie chacune suar une zone
lisaitie de iintrados, depuis la ditente au-bord d'attaque Imodificatior 5) jusqui& la charge arrii'e
(modification-B). La-fonction de mdfcto6 suehohti tl pour lea cas o4i une contrainte
eat imposie sur l'ipaisseur relative. On remarque que les modifications airodynamiques localisbes sont
obtenues-par des-modifications gdomitriquet qui sitendent presque toutes du-bord dlattaque-au bord de
fuito.

La premiire optimisation effectuie est celle relative-& linstallation motrice interne, cit6 interne.
Compte tenu des perturbations airodynamiques mesuries enasoufflerie, il apparait 4ue le but principal
dons cette section eat di6viter la formation d'un choc situi A8environ 20%~ de la corde, stir la voilure
motorisie. Pour l'optimisati~n, l1objectif retenu-de type repartition de pression est prisont fi~gure 16.
Cette ripartitien visie-est dfinie-pour compenser Vleffet de !'..Astallation motrice, c'est-&-dire, de
faqon A diminuer ie niveau-de vitesse-A 2O%,de la-corde et A accilirer li6coulement intre 40% et 70s-de
la corde A l'intrados.

L'optimisation aiti effectuis en considirant 116paisseur au droit du longeron avant pour tenir compte
des-contraintes structurales. La contrainte gdomitrique eat 6crite pour limiter la diminution de 1Vipais-
seur A 20% de la corde, notie(r, en deg& d'une borne donnie. Piusieurs calculs d'optimisation avec une
contrainte giomitrique plus ou momns sivire ont 6t0 effectu~s : Sj 0, clest-&-dire sans amincissement au
droit du longeron, V' *j 5%, %.j 10%, et enfin ur. calcul sans contrainte 9Gostrique. Six fonctions de
modification intrados ont Wt utiliss. La figure 16 prisente lbhistorique des convergences ot lea
risultats pour lea diffruntes contraintes conaidiries. Lea solutions sont proches de l'objectif vlsi
dana is rigion du bord d'attaque- et au-deli de 40% de la corde. Par contre A.XIC a 20%, le niveau de
preasion obtenu W~est proobe de is ripartition de preasion obiectif que pour lloptimisation-sans-con-
trainte giomitrique :lea solutions intermidisires corresponident aux diffirentes contraintes imposies.
Les modifications giomitriques r~sultantes an droit du mRt interne A 20%~ de la corde provocquent une
variation de 1'6paisseur de respectivement + 1,8%, - 3,3%, - 8,0% et - 17,6%.

tins adaptation significative-n'est done obtenue queon labsence de contrainte giomitrique. Vest pourquoi
i-titre ds dimonstration du-concqpt d'adaptation de la voilure, lea optimisations relatives aux autres
sections ont 6ti effectudes sans contrainte giomitrique.

L'optiaisation relative A l1instailation motrice interne, cit6 externe, a 6t6 effectuis en considirant um
objectif de type ripartition de pression, visant A neutraliser leoffet de l'installation motrice. On
cherche comae le montre is figure 17, A-retarder la-d~tente de borG d'attaque, puis A accilirer li6cou-
lernent de part et d'autre du maximum de vitesse A-iintrados. La mime base de six fonctions de modifi-
cation eat utilisie. La solution obtenue apris 14 itirations. prisentie figure 17, ne s'icarte Ge
l1objsctif que scr une-zons trbs riduite.

Alors que le-m~t interne me si6tend que jusqu8A-environ 60%~ de la corde, le mit externe occupe toute !a
corde-de l'aile. Aux six fonctions de modification intrados utilisies pour Vinatallation i-2terne, ii
fact done adjoindre lea fonctions '7 et 8 do la-figure 15 pour optiniser i'aile autour de linstallation
externe.

Loptimisation dc citi interne de celle-ci eat priasntde sut-Ia figure 18. Dana une premiire itape, le
problime eat abordi comme-pour i'installation interns, en visant uns ripartition de pression intrados
sans contr6ie de 1lextrados. La ripartition objectif me pout pas itre rigocreusement atteinte sur lea
vingt-prerniera pour cent de 15 corde :le but visi eat de riduire autant que possible le niveau de vites-
se dams cette zone af in Ge privenir ls formation du choc visible sur is figure 13. Dana cette premiiire
itape, is modification de iVintrados a une-ripercussion airodynamique A l'extradoa, oa le niveau de vi-
tease eat diminci sur toute is cords, ce qui peout induire-une-perte de portance-peu sochaitabie sur la
voilurs optimisie.

La deuxiims itape vise A-ritablir is ripartition de pression-extrados de l'aile initiale. tine-base tris
s imple constitu~e par deux fonctions de modification de 1'extradoa suffit, comae le iontre is figure 18,
4 risoudre ce problime. La-modification airodynamique de l'intradosa lai premlire dtaps W'est pas remise
en cause danu la Gecxiime itape.

Compte-tenu des-effeta de l'inatallation motrice externe c6t6 externe prosentis figure 13, iadaptation
de is voilure a it-rialisie avec une optimisation simultanie des ripartiticna de pression extrados-et
intrados. La ripartition objectif eat prisentie -figure 19. A lextrados. le but visi eat d'augmenter le
niveau de vitesse-dans la rigion-supsrsonique jcsquli 40% de is corde et de recuier ligirement la
position du choc. A l'intrados, ii s'agit principalement de privenir le diveloppement du pic do survi-
tease et de-diminuer la-charge arriire :cette-modification de la charge arrire-est diduite des caiculs
en labsence ds risultats expirimentaux disponibies dana cette rigion.

Cette-optimisation eat effectuic avec douze fonctions de modification :lea huit fonctions de miodifica-
tion Intrados-prisenties figure 15, trois fonctiona-Ge-modification extrados et une-fonction de modifica-
tion-relative au vrillage local. La solution obtenu-e apris quatorze itirationa, prisentie-sur ls figure
19, eat tris-proche de la ripartition de presalon visie, dont elle me s'icarte guirs qu'au voisinage du
bord ds f cite. tine modification-manuelie d'une-variable ie dicision a da itre effectuis & Vitiration 9
pour iviter un-minimum relatif.

5.3. comparaisqon OsVaile initimie ut au Vij ie~i

Lea quatre modifications difinies par lin calcula doptimiaation sans contrainte prisentia pricddenmenv
sent appliquies simultaniment-i Is voilure initiale-et raccorddes stir 116paisseur du mit. A-iintrados,
lea raccords sont donc en grande partie noyim dams 1'intersection avec lea m~ts. Lea modifications rela-
tives A linataliation motrice-externe s'avirent moina'pdmalisantea-par rapport aux contraintes-de struc-
tures-que ceiles imposies-par 11installation motrice interne isl modification aimultanie de lextrados
et de i'intraios y-contribue. Lea modifications-do ii6paisseur -relative de part et d'autre de installa-
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tion motrice externe A-des abscisses (20%~ et 60% de la corde) proches de l'emplacement des i.'ogerons sont
respectivement - 8,5%s et + 15,9% du c6td interne et + 4,9% et + 8,1% du c6td extorne.

La v~rification la plus rigoureuse de Iloptlmisation consisterait en us essai en soufflerie de la voilure
modifide 6quip~e de 11installation motrice. La v6rification pr~sentde ici nlest qu'approximative car elle
est offoctude & IPaide d'une-m6thode num~rique de singularit6s, dont les hypotheses ne prennont pas en
ceompte los effets visqueux ni les oudes-de choc. Les effets de la compressibilit4 sont Introduits par une
correction de Goethert.

* Les 6carts entre le champ de pression sur l'aile initiale motorisde ainsi que-sur l'aile optitisde moto-
risde, et le champ de pression sur I'aile initiale lisse, calculds-par cette m~thode, sont pr~sentds sur
les figures 20 et 21 pour l'intrados et 1'extrados de la voilure.

A l'intrados, oO l'optimisation vise essentiellement A prdvenir ls formation d'un choc A 20% de la-corde
* du cdt6 interne, 1e but vis6 a Wt atteint. L,, perturbation de l'instal.-ktion motrice interne cdt6 inter-

ne eat bien annul6e dans cette r~gion. Sloe 6t6 partiellesent ddplacde vers lamont et vers l'aval, ce
qui ne devrait pas provoquer de probl~me particulier compte tenu de l'offet de Ilinstailation-dtermin6
en souffierie et pr~sent6 figure 13. L'adaptation effectu~e autour de l'instaliation externe annulo
presque entifrement In perturbation sur i'aile optimis~e.

A l'extrados, seule i'aiio au droit do i'installation motrice externo a 6t0 optimisde :ce qui apparait
sur is figure 21. La di'sinution do la perturbation de i'instaliation motrice extorne confirne V'intdt
de contrdler la rdpartition de pression extrados et de modifier A is fois los deux faces de laiie.

L'application prksentde net en 6vidence I'intdrft de modifier is voilure pour tenir coizte de i'effet do
l'installation motrice. Hais lea rdsultats de calculs montrent clairement que dans dne application indus-
trielle is totalit6 de-cet effet no pourrait pas 6tre annulde par use modification do is voilure seule.

6. ;CONLSIONI

Une mdthode d'optimisation de voilures peut donner lieu A deux types d'applications :l'optimisation par
rapport aux coefficients adrodynamiques globaux, par exempie is mininisation- do-la train6e pour une por-
tance donnde, et l'optimisation en-mode quasi-inverse, qui vise une-rdpartition de pression donn~e.

Dana le premier type doptinisation, la-di ,fficultd-consiste . obtenir une-estimation fiable des coeffi-
cients globaux & i'ali d'une-z6thode a~rodynamique-qui doit 6tre pos coOteuse. Il eat indispensable que
la-convergence des catlculs adrodynamiques soit tr~s poussde pour quo le-calcul des-fonctions objectif et
contraintod et de lours 2radients-soit correct. Ceci conduit, pour des consid~rations do coat, A utiliser
des naillages grossiers, sur lesquels l'estimation du coefficient do train~e oat d~licate isl m6thode
usuelle d'estimation de is train6e en fivide-parfait par int~gration do la pression & is surface do
l'aile dolt 6tre-romplacde par uno technique do bilans-d(. quantit6 do mouvonent dane le champ, dont is
pr~cision reste acceptabie en mailiage grossier.

Lea applications do la m~thod-d'optimisation en-siode quasi-inverse sont nombreuses. bLadaptation de is
partie interne d'une voilure dana un-dcoulement tranasoniqub on eat un exesplo. Etant donnd 1e caract~re
fortoment tridimonsionnel des phdnos~nes et la in6cessitd de respecter des contraintoa d'avionnabilit6,
uno approche par optimisation enmode-quasi-inverse-est bien appropri~e au traitement do co probl~me.

L'approche quasi-inverse est dgalement int~ressante-pour optimiser lea phftom~nos-dlinteraction entre
l'aile-et los autros composants do iavion. H~me si le code adrodynanique int~grd A a i 6tbode d'optimi-
sation n'ost pas capable do mod~lisor los ph~nom~nes coiapiexes d'interaction, coux-ci peuvent 6tre
6valu~s par ailleurs et pris-on compte dana la d~finition-do i'objectif ou-dos contraintos. L'exemplo de
l'adaptation d'une voilitre de-quadrirdacteur nontre qulil eat ainsi possible de-rdduire consid~rablement
lea perturbations causdes par l'installation motrice-en modifiant i'aile-pa- optimisation num6riquo.
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AERODYNAMIC DESIGN VIA CONTROLTHEORY*

by
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United States

1. Introduction and historical survey

Computers have had a twofold impact on the science of aerodynamics. On the one hand

numerical simulation may be used to gain new insights into the physics of complex flows. On the

other hand computational methods can be used by engineers to predict the aerodynamic

characteristics of alternative designs. Assuming that one has the ability to predict the

performance, the question then arises of how to modify the design to improve the performance.

This paper is addressed to that question.

Prior to 1960 computational methods were hardly used in aerodynamic analysis. The

primary tool for the development of aerodynamic configurations was the wind tunnel. Shapes

were tested and modifications selected in the light of pressure and force measurements together

with flow visualization techniques. Computational methods are now quite widely accepted in the

aircraft industry. This has been brought about by a combination of radical improvements in

numerical algorithms and continuing advances in both speed and memory of computers.

If a computational method is to be useful in the design process, it must be based on a

mathematical model which provides an appropriate representation of the significant features of the

flow, such as shock waves, vortices and boundary layers. The method must also be robust, not

lable to fail when parameters are varied, and it must be able to treat useful configurations,

ultimately the complete aircraft. Finally reasonable accuracy should be attainable at reasonable

cost. Much progress has been made in these-directions [1-10]. In many applications where the

flow is unseparated, including designs-for transonic flow with weak shock waves, useful predictions

can be-made quite inexpensiveiy using the-potential flow equation ji-4j. Methods are also

available for solving the Euler equations for two- and three-dimensional configurations up to a

* eprntcd from theprocceding of the 12th INACS World Congrcss on-Scientific Computatlon held in tar an July 1988.
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complete aircraft [5-10]. Viscous simulations are generally complicated by the need to allow for

turbulence: while the Reynolds averaged equations can be solved by current methods, the results

depend heavily on the choice of turbulence models.

Given the range of well proven methods now available, one can distinguish objectives for

computational aerodynamics at several levels:

1) Capability to predict the flow past an airplane or important components in different flight

regimes such as take-off or cruise, and off design conditions such-as flutter.

2) Interactive design calculations to allow rapid improvement of the design.

3) Automatic design optimization.

Substantial -progress has been made toward the first objective, and in relatively simple

cases such as an airfoil or wing in inviscid flow, calculations can be performed fast enough that the

second objective is within reach. The third objective has also-been addressed for various special

cases. In particular it has been recognized that the designer generally rhas an idea of the kind of

pressure distribution that will lead to the decired performance. Thus it is useful to consider the

problem of calculating the shape that will lead to a given pressure distribution. Such a shape does

not necessarily exist, unless-the pressure distribution satisfies certain constraints, and the problem

must therefore be very carefully -formulated: no shape exists, for example, for which stagnation

pressure is-attained over the entire surface.

The problem of designing a two dimensional profile to attain a desired pressure distribution

was first studied by Lighthill, who solved it for the case of incompressible flow by conformally

mapping the profile to a unit circle-1f]. The speed over the profile is

q = 00/h (1.1)

where 0 is the potential for flow past a circle, and h is the modulus of the mapping function. The

solution for 1-is known for incompressible flow. Let qd be the desired surface speed. Then the

surface value of h can be obtained by setting q = qd in equation-(11). and-smnce-the-apping

function is analytic, it is uniquely determined by the value of h on the boundary. A solution
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exists for a-given speed q. at infinity only if

Sqd0 = q.(1.2)

and there are additional constraints on q if the profile is required to be closed.

Lighthill's method was extended to compressible flow by McFadden [12]. Starting with a

given shape, and a corresponding mapping function h(0 ), the flow equations can be solved for the

potential 0( 0), which now depends on h( 0 ). A new mapping function h(1) is then determined by

setting q = qd in equation (1.1), and the process is repeated. In the limiting case of zero Mach

number the method reduces to Lighthill's method, and McFadden gives a proof that the iterations

will converge for small Mach numbers. He also extends the method to treat transonic flow

through the introduction of artificial viscosity to suppress the appearance of shock waves, which

would cause the updated mapping function to be discontinuous. This difficulty can also be

overcome by smoothing the changes in the mapping function. Such an approach is used in a

computer program written by the author for Grumman Aerospace. It allows the recovery of

smooth profileQ that generate flows containing shock waves, and it has been used to design

improved blade sections for-propellers [13]. A related method for three dimensional design was

devised by Garabedian and McFadden [14]. In their scheme the steady potential flow solution is

obtained by solving an artificial time dependent equation, and the surface is treated as a free

boundary. Tris is-shifted according to an auxiliary time dependent equation in such a way that

the flow evolves toward the specified prez;ure distribution.

Another way to formulate the problem of designing a profile for a given pressure

distribution is to integrate the corresponding surface speed to obtain the surface potential. The

potential flow equation is then solved with a Dirichlet boundary condition, and a shape correction

is determined from the-calculated normal velocity through the surface. This-approach was first

tried by Tranen [15]. Volpe and Melnik have shown how to allow for the constraints that must-be

satisfied by-the pressure distribution if a solution is to exist [16]. The same idea has been used by

HJoci an- e- ns itt ns [171

The hodograph transformation offers an alternative approach to the design of airfoils in
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transonic flows. Garabedian and Korn achieved a striking success in the design of airfoils to

produce shock-free transonic flows by using the method of complex characteristics to solve the

equations in the hodograph plane [181. Another design procedure has been proposed by Giles,

Drela and Thompkins [19], who write the two-dimensional Euler equations for inviscid flow in a

streamline coordinate system, and-use a Newton iteration. An option is then provided to treat the

surface coordinates as unknowns, while the pressure is fixed.

Finally, Hicks and Henne have explored the possibility of meeting desired design objectives

by using constrained optimization [20]. The configuration is specified by a set of parameters, and

any suitable computer program for flowanalysis is used to evaluate the aerodynamic

characteristics. The optimization method then selects values of these parameters that maximize

some criterion of merit, such as the lift-to-drag ratio, subject to other constraints such as

required wing thickness and volume. In principle this method allows the designer to specify any

reasonable design objectives. The method becomes extremely expensive, however, as the number

of parameters is increased, and its successful application in practice depends heavily on the choice

of a parametric epresentation of the configuration.

The purpose of this paper is to propose that there are benefits in regarding the design

problem as a control problem in which the control-is the shape of the boundary. A variety of

alternative formulations of the design problem can then be treated systematically by using the

mathematical theo.y for control of systems governed by partial differential equations [211.

Suppose that the boundary is defined -by a function f(x), where x is the position vector. As in the

case of optimization theory.applied to the design problem, the desired objective is specified by a

cost function I, which~may, for example, measure the deviation-fro4 a desired surface-pressure

distribution, but could also represent other measures of performance such as lift and drag. The

introduction-of-a cost function has the advantage that if the objective is unattainable, it is still

possible to find a minimum of the cost function. Now-a variation in the control 9 leads to a

variation 51 in the cost. It is shown in the following sections that 61 can be expressed to first order

as an inner product of a gradient functi-,n g with 91:

& =-6 g, t)

Here g is independent of the particular variation 6f in the control, and can be determined by
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solving an adjoint equation. Now choose

6f = -Ag

where A is a sufficiently small positive number. Then

bl= -A(gg) < 0

assuring a reduction in 1. After making such a modification, the gradiept can be recalculated and

the process repeated to follow a path of steepest descent until a minimum is reached. In order to

avoid violating constraints, such as a minimum acceptable wing thickness, the steps can be taken

along the projection of the gradient into the allowable subspace of the control function. In this

way one can-devise design procedures which must necessarily converge at least to a local

minimum, and which might be accelerated by the use of more sophisticated descent methods.

While there is a possibility of more than one local minimum, the cost function can be chosen to

reduce the likelihood of difficulties caused by such a contingency, and in any cwse the method will

lead to an improvement over the initial design. The mathematical development resemblia in

many respects the method of calculating transonic potential flow proposed by Bristeau,

Pironneau, Glowinski, Periaux, Perrier and Poirier, who reformulated the solution of the flow

equations as a least squares problem in control theory-[4].

In order to illustrate the application of control theory to design problems in more detail,

the following sections present design procedures for three examples. Section-2 discusses the design

of two dimensional profiles for-compressible potential flow when the profile is generated by

conformal mapping. This leads to a generalization of the methods of Lighthill and McFadden.

Section 3 discusses the same problem when the flow is governed by the inviscid Euler equations.

Finally, Section 4 addresses the-three dimensional design-problem for a wing, assuming the flow to

be governed by the inviscia - der equations. The procedures which are presented require the

solution of several partial differential equations at each step. The question of the most efficient

discretization of these equations is deferred-for future investigation.



22-6

2. Design for Potential flow using Conformal mapping

Consider the case of two dimensional compressible inviscid flow. In the absence of shock

waves an initially irrotational flow will remain irrotational, and we can assume that the velocity

vector q is the gradient of a po-ntial 0. In the presence of weak shock waves this remains a fairly

good approximation. Let ., T and S denote vorticity, temperature and entropy. Then according

to Crocco's Theorem, vorticity in steady flow is associated with entropy production through the

relation

flx. +TVS=0

Thus, the introduction of a potential is consistent with the assumption of isentropic flow, and

shock waves are modelled by isentropic jumps. Let p, p, c and M be the pressure, density, speed

of sound and Mach number q/c. Then the potential flow equation is

V. pV = 0 (2.1)

where the density is given by

pD 1 M2 (1-<q2)}s/ -I  (2.2)

while

p = c2 =22 (2.3)

Here M is the Mach number in th? free stream, and the units have been chosen so that p and q

have the val e unity in the far field. Equation (2.2) is a consequence of the energy equation in the

fo~m

+ constant

.. .. . . . . --- _ - _... . . . .. . .. . ... . ... . .. -- --- 1 - - - . . . .... . . . .... . . . ...- --
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D

z

Figure-1

Suppose that the domain D exterior to the profile C in the z plane is conformafly mapped

onto the domain exterior to a unit circle in the a plane as sketched in Figure 1. Let R and 0 be

polar coordinates in the a plane, and let r-be the inverted radial coordinate 1/R. Also let h be the

modulus of the derivative of the'mapping function

h=Ijdz
Now the potential flow equation becomes

a a
W (p 0 )+ r(rpo r )=O mnD (2.4)

where the density is given by equation (2.1), and the circumferential and radial velocity

components are

ro0  r2r (2A)
u= , V-

while

q2 = u2 + v2 (2.6)

The condition of flow tangency leads to the Neumann boundary condition

onC (2.7)

In the far field the potential is given by an asymptotic estimate, leading to a Dirichlet boundary

condition at T = 0 [2].



22-8

Suppose that it is desired to achieve a specified velocity- distribution qd on C. Introduce

the cost function

I= (q- qd)2 dO (2.8)

The design problem is now treated as a control probl2m where the control function is the mapping

modulus h, which is to be chosen to minimize I subject to the constraints defined by the flow

equations (2.2 - 2.7).

A modification & to the mapping modulus will result in variations 6o, 64, v and 6p to the

potential, velocity components and density. The resulting variation in the cost will be

6 = (q-qd) 6q do (2.9)

where-on C q-= u. Also

bo - 20r_

while according to equations (2.2) and (2.6)

(9 _ ,u = OV

c c

Hence

6p-= - 1 (u6u + v6v)
c

c c 1 ~(u60 + vr5or)

It follows that 66 satisfies

a 2 6 0 2 h
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where

{p ,a UYa raI(1 - u 2 8 (2.10)

Then if ~'is any periodic differentiable function which v'anishes in the far field

Uo L6dS )PM 2V~ vo - AdS (2.11)

where dS is the area element rdrdO, and the right hand side has been integrated by parzs.

Now we can augment equation (2.9) by subtracting the constraint (2.11). The auxiliary

function 0 then plays the role of a Lagrange multiplier. Substituting for bq and integrating the

term

(q q OdO

by parts, we obtax1

Now suppose-that 0' satisfies the adjoint equation

LOb=O mD (2.12)

with the boundary condition

P '- d onOC (2.13)
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Then integrating by parts

r~ r

and

61 = -f (q - qd)q.dO + pM 'V -O dS (2.14)

Here the first term represents the direct effect of the change in the metric, while the area integral

represents a correction for the effect of compressibility.

Equation (2.14) can be further simplified to represent 61 purely as a boundary integral

because the mapping function is fully determined by the value of its modulus on the boundary.

Set

log = f + ifl

where

f= log k r =logh

and

Then f satisfies Laplace's equation

Af=O inD

and if there is no stretching in the far-field, f -40. Thus

AM=0 rinD
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and 6f-4 0 in the far field.

Introduce another auxiliary function P which satisfies

AP = pM 2VO. VO& in D (2.15)

and

P=O onC (2.16)

Then the area integral in equation (2.14) is

AM PfdS= bf 'PdO- Mbf dS

and finally

= J gbf dO (2.17)
C

where
P (q-qd)q (2.18)

This suggests setting

bf =-Ag

so that if A is a sufficiently small positive number

&I =-A I g2dO < 0

Arbitrary variations bf-cannot, however, be admitted. The condition that f-4 0 in the iax

field, and also the requirement that the profile should be closed, imply constraints which must be
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satisfied by f on the boundary C. Suppose that log paj is expanded as a power series

log { 3 = o 
(2.19)

n=O

where only negative powers are retained because otherwise a would become unbounded for large

o. The condition that f 0 as a -4 w implies

Co = 0

Also the change in z on integration around a-circuit is

Az-= ddor=2rie1

so the profile will be closed only if

ci =0.

On C equatioi: (2.19) reduces to

fC+ig3c= (ancosnO+bnsinnO)+i I (bncosn-an sinn0)

n=0 n=0

Thus an and bn are the Fourier coefficients of fc, and these constraints reduce to

a0 = 0, a1 = 0, b1 = 0

In order to satisfy these constraints we can project g on to the admissible subspace for fc

by setting

g= g - A0 - A, cos 0- B1 sin 0 (2.20)
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where

A_ -JgdOC

A = g cos 0 dO (2.21)

C

B_ - gsinOdO
C

Then J(g--)-dO=O
C

and if we take

H =

it-follows that to first order

If the flow is subsonic this procedure should converge toward the desired speed distribution

since the solution will remain smooth, and no unbounded derivatives will appear. If, however, the

flow is transonic, one must allow for the appearance of shock waves in th., trial solutions, even if

qd is smooth. Then q - qd is not differentiable. This difficulty can be circumvented by a more

sophisticated choice of the cost function. Consider the choice

I~~ ~~ =€ I A^2+ dI- ,[ s2A ( 2)jd (2.22)

where Al and A2 are parameters, and the periodic function S(6 ) atisfithe eqa,o+n

Ais - A2 A q - (2.23)
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Then
9[ = (A SbS + "A 'S bS

d2
61 = ( 1 s- A2  S)dO

= [SqdO

Thus S replaces q - qd in the previous formulas, and if one modifies the boundary condition (2.13)

to

= P MN onC (2.24)

the formula for the gradient becomes

g = .- Sq (2.25)

instead of equation (2.18). Then one modifies f by a step -A in the direction of the projected

iient as before.

The final design proceduxe is thus as follows. Choose an initial profile and corresponding

mapping function f. Then

1) Solve the flow equations (2.2 - 2.7) for 0, u, v, q, p.

2) Solve the ordinary differential equation (2.23)-for S.

3) Solve the adjoint equation (2.12) for 0 subject to the boundary condition (2.24).

4) Solve the auxiliary Poisson equation (2.15)for F.
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5) Evaluate

oP
g = - Sq

on C, and find its projection onto the admissible subspace of variations according to

equations (2.20) and (2.21).

6) Correct the boundary mapping function fc by

bf = -g

and return to step 1.

3. Design for the Euler equations using conformal mapping

This section treats-the case of two dimensional compressible flow where the potential flow

equation is replaced as a mathematical model by the inviscid Euler equations. Let p, p, u, v, E

and H denote the pressure, density, Cartesian velocity components, total energy and total

enthalpy. For a perfect gas

p = --1)p{E- (u2 + v2 )} (3.1)

and

pH = pE + p (3.2)

where y is the-ratio of specific heats. The Euler equations may then be written as

+ +o =0 (3.3)

where x and y are Cartesian- coordinates, t is the time coordinate and

-~II __________________ _____________. . . . . ..._______
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PU PU2 P +PPvu (3.4)Pv Puv I 2 + p

pE puH pvH

As in the previous section, suppose that the domain-D exterior to the profile C in the z

plane is mapped conformally onto the domain exterior to a unit circle in the o plane (see Figure

1). Assume also that the outer boundary B of the domain is very far from the profile. Let the

derivative of the mapping function be

dz-= h ei' (3.5)

Also let r and 0 be polar coordinates in the a plane, where in this case it is more convenient to

take r as the true radial coordinate denoted by R in the previous section, and 0is measured in the

clockwise direction. Define the rotation parameters

c cos (f- 0), s-= sin (f- 0) (3.6)

and rotatea velocity components

Then the Euler equations become

a (rh2w) + a (hF) + ar (rhG) = 0 (3.8)

where

pu = pl u+sp +cp (3.9)

W= F= G= pVU3
pv pUv - cp pVv + sp

Then the flow is delern.ined-as the steady state solution of equations (3.8) and (3.9), subject to
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the flow tangency-condition

V=0 onC (3.10)

At the far field boundary B conditions can be specified for incoming waves, while outgoing wavex

are determined by the solution.

In- contrast to the case of potential flow, the pressure is not determined solely by the speed,

and assuming that one wishes to control the surface pressure distribution, a suitable cost function

is

I=1 (P-pd) 2 dO (3.11)

where Pd is the desired pressure. A modification to the mapping function-will influence equations

(3.8) and (3.9) through changes 6h and 6pin both the modulus and argument of , finally

leading to a variation in the cost function

= i (P - Pd) 6p dO (3.12)
C

where 6p is the variation of the pressure.

Now the mapping-variations cause variations in the rotation parameters

6s= c 6f, &c=-sfi

6(hs) = sbh + hcfl, 4he) = c6h - hs6fl (3.13)

Define the Jacobian-matrices

A afB a

C =sA - cB, D cA + sB (3.14)

I
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Then the variation 6w in w satisfies

ghCfw) + .j(rhD6w) - (Fbh + hG63) - r(Gbh - hFi) (3.15)

Also

6V=O onO (3.16)

At the outer boundary there will be no variation in characteristic variables corresponding to

incoming waves. If we take the outer boundary B at a fixed radius, incoming waves correspond to

negative eigenvalues of D. Suppose that D is represented as T A T- 1, where A is a diagonal

matrix containing its eigenvalues, and the columns of T are eigenvectors of D. Define

=T - 1 bw

and 6- as the components of 0 corresponding to negative eigenvalues of T. Then

a-=O onB (3.17)

Since 6w satisfies the constraint (3.15), we can replace equation (3.12) by

6' = (P-Pd)6pdO-J 1 8 {(hC6w) o +.(rhD6w)}drde

Jj I' {(F6h + hG~fl) + r(G& - hF6)drdO (3.18)

where the vector 0 is a-Lagrange multiplier,-and the superscript T denotes the transpose. Suppose

that 0 is the steady state solution of the-adjoint equation

VOT -rT = nD (3.19)

Atthe outer boundary B conditions can be specified for incoming waves, correaonding-to positive
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eigenvalues of D T T T A TT. Define

=T

and +as the components of ~icorresponding to positive eigenvalues of D. Then we can set

j'=0on B (3.20)

If we integrate equation (3.18) by parts the contribution

rh ITDbwdO= rh A 60 dO

vanishes because of the complementary boundary conditions-(3.17) and (3.20) satisfied by &~ and

at the outer boundary. If &h and 6P3 decay fast enough in the far field the contribution

i r (Gbh -hMf) dO

will also be negligible. Thus we find that

1=j (P-PdpO h~ ~ Ff)d

where

J = - J (FTOO + GTxlbr)6h + (GTOOFTro&r) h6fldrdO (3.21)
D

Also

hDbw+G&h-hFrf3=46hG)=h IcbPp b~1(hc)
[S6 bp _6(hs)j
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Thus using the relations (3.13)

R1= (P-Ppdd+ (cO2 + si 3)6phdO+ p(cO&2 +si 3)6hdO-~ P(sO2 -cO3)6fihdO+ J

Now let 0 satisfy the boundary condition

h(cO2 + s 3) - (p - pd) on C (3.22)

Then

I =-(P-Pd)P - dO- (sO'2 -cO 3 )ph6/fdO+J (3.23)

Finally we can use the fact that the mapping function is fully determined by its boundary
value to reduce J to a boundary integral. Set

log = f + i

where

f =log =d]log h

and

Also f and P separately satisfy Laplace's equation

f = 0 , Afi= 0

and jointly they satisfy the Cauchy Riemann equations

fo O=rr, o = f
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f Let the auxiliary function P satisfy the equation

AP= h(F T 00+ G Tr~br) in D (3.24)

and the boundary condition

P=O onO (3.25)

Also let the auxiliary function Q satisfy the equation

AQ = h(G Ti00- F T r~) in D (3.26)

and the boundary condition

V- ps2+0)onOC (3.27)

Then

J =J(AP 6f +AQ6i) drdO

- b 'J {+ hp(s 2 + c 3) - Q6}
C

- b 'p6f + hp(s& 2 + c03) - Q bp f~dO

Thus finally

61 gfdO (3.28)

where

g + (3.29)
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As in the previous section, an appropriate modification of f is

where " is the projection of g onto the admissible subspace of variations defined by equations

(2.20) and (2.21), and A is a sufficiently small positive number. Then

& -A 2 2 dO<O

If the flow is transonic, shock waves are likely to be formed, and again it may be desirable

to use a more sophisticated cost function to produce a smooth shape change. In this case we can

set

I J [,A1S2 + A2 [dS]2] dO (3.30)
C

where A, and A2 are positive parameters, and 1,he periodic function S(8) satisfies the equation

d2S1IS - A2 d P p Pd (.1

Then

J, J (A~S+ ,d 6S) dO
C

J S(A1 6S -A 2  bS) dO

C 2 di

=Sp dO

Thus S replaces P P d in the previous formulas. If one modifies ithe boundary condition (3.22) -to
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h(cO2 + 3) S on C (3.32)

the formula for the gradient becomes

g- + - Sp (3.33)

instead of equation (3.29), and an appropriate modification of f is again -A'.

The final design procedure using the Euler equations is thus as follows. Choose an initial

profile and corresponding mapping function f. Then

1) Solve the flow equation (3.8) for w by integrating to a steady state.

2) Solve the ordinary differential equation (3.31) for S.

3) Solve the adjoint equation (3.19) with the boundary conditions (3.20) and (3.32) for 0 by

integrating to a steady state.

4) Solve the auxiliary Poisson equations (3.24) and (3.26) for P and Q.

5) Evaluate

g=,+ I-Sg= or

on C, and find its projection N onto the admissible subspace of variations according to

equations (2.20) and (2.21).

6) Correct the boundary mapping function fC by

bsf = -N

where A > 0, and return to-step 1.
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4. Wing design using the Euler equations

In order to illustrate further the application of control theory to aerodynamic design:

problems, this section treats the case of three-dimensional wing design, again using the inviscid

Euler equations as the mathematical model for compressible flow. In this case it proves

convenient to denote the Cartesian coordinates and velocity components by x1 , x2, x3 and Ul, u2,

u3 , and to use the convention that summation over i = 1to 3 is implied by a repeated index i.

The three-dimensional Euler equations may then be written as
^ fi

O+ 0 (4.1)
= 0

where

PU

S= iPU2 (4.2a)[ Pu3

p E

and
Pu1  Pu2  PU3

Pu2 +p Pu2 u 1  Pu3 u (
2 £3- (4.2b)Pulu 2  Pu2 + p  p3ju 2

UlU 3  Pu2 u 3  pu + p

PU1 E Pu2 E [Pu3 E

Also

2
P = (7Y- 1) p(E - ,pH =pE + p (4.3)

Consider a transformation to coordinates X1 , X2, X3 where

H J =det(H), t. axi (4.4)

-i(
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The Euler equations can now be written as

6W O Fi
+ 0 -0 (4.5)

wher

W=Jw, Fi=J 'f (4.6)

Define the contravariant velocity vector

U2  = H -  u2 (4.7)

U3  u3  .

Then
pUi

axi
PUiul + WR1 p

OX.
Fi=J PUiu2 +  P  (4.8)

Tx2

PUiu3 + O3i

pu

Assume now that the new coordinate system conforms to the wing in such a way that the wing

surface Bw is represented by X2 = 0. Then the flow is determined as the steady state solution of

equation (4.5) subject to the flow tangency condition

U2 =0 onBw (4.9)

At the far field boundary, conditions can be specified for incoming waves as in the

two-dimensional case, while outgoing waves are determined by the solution.

Suppose now that it is desired to control the surface pressure by varying the wing shape. It

is convenient to retain a fixed computational domain. Variations in-the shape then resuh in
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corresponding variations in the mapping derivatives defined by H. Introduce the cost function

I = f (p--pd)2 dXldX3  (4.10)
B

w

where Pd is the desired pressure. A variation in the shape will cause a variation bp in the pressure

and consequently a variation in the cost function

& = If (P -Pd) 6p dXldX 3  (4.11)

w

Since p depends on w through the equation of state (4.3), the variation 6p can be

determined from the variation 6w. Define the Jacobian matrices

Ai = 0 Ci --H iA. (412)

Then

(bi) = 0 (4:13)

where

Ox.
Fi = Ci6w + (J -j) fj (4.14)

and for any:differentiable vector

IT _ Fi dv n TbFi ds (4.15)

bouda r ies

where n. n2 and n3 are the components of a unit vector normal to the boundary. On the wing

surface BW , n U = n3 = 0-and it follows taom equation (4.9) that
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0 0
OX2  D2

6F 2 =J -p +p (J 6 -( ) (4.16)

OX2  n)J
-
6px

10 0

Suppose now that t is the steady state solution of the adjoint equation

CT 'k=0 in D (4.17)
1

At the outer boundary incoming characteristics for 0 correspond to outgoing characteristics for

6w. Consequently, as in the two-dimensional case, one can choose boundary conditions for 0 such

that

ni Tc i  -- 0

If the coordinate transformation is such that JH- 1) is negligible in the far field, the only

remaining boundary term is

- TE 2 bodXl1dX 3

w

Let -0 satisfy the boundary condition

X2 onB (4.18)
0(2 vx- + 3 Vx- '4 i-3) (P -Pd) o w (.a

Then, since it follows from equation (4.17) that

r '916Tt ' "i.C 6wdV =0
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we find that

w 1 6~ 7 + ,8(2+ bj;2]} p dX~dX3  (4.19)D F2

Y

Xy XY

j Figure 2

HA convenient way to treat a wing is to introduce sheared parabolic coordinates through the

transformation

I X

+ iy = x(Y + s(xz))

z--

Here x, y, z are Cartesian coordinates, and X and Y+S correspond to parabolic coordinates

generated by the mapping

x + iy = (X + i(Y + S))2

at a fixed span station Z. The surface Y=O is a shallow bump corresponding to the wing surface,

with a height S(X,Z) determined by the equation

X+iS= 2 (xs + iys)

where x,(z) and y6(z) are coordinates of points lying in the wing surface. We now-treat S(X,Z) as
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the control.

In this case

[ X - (Y+S) Sx (Y+S) (Y+S)Sz

H [Y + S+ XSx ] XSz

while
whil x 2 + (Y+S) 2

, and
(n X Y+S 0

(Y+S+XSX) (X-(Y+S)S X  -JSZ

1 00 J

Also

3J= 2(Y+S) 6S

and
I [ 0 6S 0

(JHI1 ) = (BS+X6Sx) - (bSSx+(Y+S) 6Sx) - (6J Sz+JZ)]
0 01

Inserting-these formulas in equation (4.19) we find that the volume integral in 61 is

b Sf1dV

T {(bS+XbSX)f 1 +-(bSSX+(Y+S)65b 2 + 6S+JSf) dV

+j V7, Ojav
D

whexit S and 6S are-independent of Y. Therefore, integrating over Y, the variation of the cos'
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function can be reduced to a-surface integral of the form

a (P(X,Z)6S + Q(X,Z)bSX + R(X,Z)bSz)dXdZ

Also the shape change will be confined to a bounded region of the X-Z plane, so we can integrate

by parts to obtain

b6 = Jj(P OQ OR 65 dX dZ

Thus to reduce I we can choose

where A is sufficiently- small and non-negative.

In order to impose a thickness constraint we can define a baseline surface So(X,Z) below

which S(X,Z) is not allowed to fall. Now if we take-A = A(X,Z) as-a non-negative function such
that

S(XZ) + 6s(XZ) _ S0(XZ)

Then the constraintis satisfied, while

oA(p-_5-OR2 XdZ
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5. Conclusion

The purpose of the last three sections is to demonstrate by representative examples that

control theory can be used to formulate computationally feasible procedures for aerodynamic

design, The cost of each iteration is of the same order as two flow solutions, s.nce the adjoint

equation-is of comparable complexity to the flow equation, and the remaining auxiliary equations

could be solved quite inexpensively. Provided, therefore. that one can afford the cost of a

moderate number of flow solutions, procedures-of this type can be used to-derive improved

designs. The approach is qui.. general, not limited to particular choices of the coordinate

transformation or cost function, which might in fact contain measures of other criteria of

performance such as lift and drag. For the sake of simplicity certain complicating factors, such as

the need to include a special term in the mapping function to generate a corner at the trailing

edge, have been suppressed from the present analysis. Also it remains to explore the numerical

implementation of the design procedures proposed in this paper.
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ABSTRACT

An aerodynamic design optimization technique which couples direct optimization algorithms
with the analysis capability provided by appropriate computational fluid dynamics (CFD)
programs is presented. This technique is intended to be an aid in designing the aerodynamic
shapes and test conditions required for the sucLessful simulation of aircrift engine Inlet
conditions in a ground test environment. However, the method is applicable to other
aerodynamic design probleis. The approach minimizes a nonln.ar least-squares objentive
function which may be defined in a region remote to the geometrit surface being optimzed. In
this study, finite-difference Euler and Navier-Stokes codee were applied to obta n the
objective function evaluations, although the optimizatior method could be coupled wit;, any
CFD analysis technique. Pesults are presented for a NACAOO12 airfoil, convergent/Jivergent
nozzles, and a planar, supersonic forEbody simulator design.

NOMENCLATURE

B Jacobian approximation
F Least squares objective function
gl[u) = Bernstein basis function
" Jacobian matrix of R with respect to P
M = Total number of design parameters
X = Mach number component along the x-axis
My -Mach number component along the y-axis
Hz = Mach number component along the z-axis
N - Total number of residual components
Ulr - Total number of reference plane grid points
11c = Total number of parameter constraints
P a Design parameter vector
Pi = Design parameter
PT - Total pressure
ri - Least-squares residual component
R - Least-squares residual vector
t = NACAO012 airfoil thickness parameter
TT - Total temperature
AP - Computed changa in design paraneters
x - NACAO012 airfoil axial coordinate
xn - Position vectors of Bezier control points
x(u) - Bernstein-Bezier polynomial
x(u v,w) Three-dimensional Bezier polynomial
y(x) = Function which defines a NACAOO12 airfoil

1.0 INTRODUCTION

During the past three decades Computational Fluid Dynamics (CFD) has emerged as a discipline which
allows the analysis of many previously intractable problem. in fKud mechanics. Although CFD is still in
a stage of rapid growth and development, it Is already being wiiely used to enhance the aerodynaric
design process (ilef. 1). The most common contribution of CFO in aerodynamic design has been to provide
direct analyses of existing or proposed design configurations as a means of evaluating the design's
utility. Coupling numerical optimization methods with the versatile analysis capability alforded by
modern CFO techniques offers the potential to . low many aerodynamic desiqns to be cptmi ze d rlatIve t o
specified design criteria in a fashion heretofore impossible. Tho objective of this paper is to present a
coupled CFD/norlinear optimization method which is being developed for application to aerodynamic design
problems. This is accomplished through the optimization of selected design parameters by minimizing a
nonlinear lpast squdres objective functi.-. The technique presented Is applicable in both two and thr e
dimensions and in principle could be coupled with any appropriate CFD technique.

Aerodynamic design optim.zation utilizing CFD has bee the subject of several recent papers. An
inverse design capability was Implemented into an Euler code by Zannetti and Pandolfi (Ref. 2). A similar
capability was implemented into h thin-layer ifavier-Stokes code by Yang and Ntone (Ref. 3). Design

*The rcsearch riported herein was performed by the Arnold Engineering Development Center (AEDC), Air

Force Systemi Comsund. !.or. and analysis for this research were done by personnel of Sverdrup
Technology, In .,/ADC Croup, operating contractor of the AEDC propulsion test facilities. Further
reproduction is authorized to satisfy the needs of the U. S. Governement.
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optimizations have been performed by utilizing a family of base designs to define basis functions from
which the optimum design can be determined (e.g., Vanderplaats (Ref. 4), Barger and Moitra (Ref. 5), and
Pittman (Ref. 6)). Madabhushi, Levy, and Pincus (Ref. 7) Loupled a spatially parabolized Havier-Stokes
code with a quasi-Newton optimization algorithm for application to subsonic duct design. Jenkins and
Hatfield (Ref. 8) coupled a method-of-characteristics flow solder with the looke and Jeeves pattern-
search optimization algorithm to aid in the design of supursonic turbine stators. Each of these
techniques was successfully applied to the class of design problem for which they were developed.
However, the aerodynamic range of applicability can be extended if nonlinear optimization is coupled with
a general purpose Euler/Navier-Stokes solver.

The aerodynamic design optimization problem which motivated this work Is illustrated in Fig. 1. This
figure depicts an inlet-engine compatibility test within a generic ground test facility designed to
evaluate the performance of an integrated propulsion system. In this problem the indicated forebody
simulator must be designed In conjunction with tie free-jet flow properties (total pressure, total
temperature, Mach number, and flow angle). The design requirement is to produce a flow field entering the
engine inlet in the free-jet installation which is very similar to that which would be encountered in
flight (Ref. 9). The underlying premise is that it is irrelevant, to the engine/inlet combination, from
whence the conditions came as long as an adequate match exists. The aerodynamicist must specify a
forebody simulator geometry and free-jet fluid properties which produce, within dusign tolerance, the
desired fluid dynamic state at the region of interest. The fluid properties are specified at a reference
plane upstream of the engine inlet, hereafter referred to as the inlet reference plane (RP).

This optimization problem possesses several interesting features In that: (1) the flow-field
constraints are imposed at a location away from the geometric surface which Is being optimized, (2) some
free-jet fluid properties must be optimized, (3) discontinuous or localized high gradient behavior may
occur within the design space (e.g., shocks or onset of separated flow), and (4) a history of prior
similar designs does not exist. These characteristics preclude the direct application of techniques
previously developed since the fluid dynamic analysis requirementz indicate that the optimization
algorithm be coupled to a three-dimensional Navier-Stokes code or an Euler code.

For this design problem, the fluid dynamic state is completely specified at the RP and an objective
function can be defined at the RP which measures the error norm between the desired fluid dynamic
properties and the fluid properties computed for a particular design point. The design requirement is to
minimize this highly nonlinear objective function with respect to identified design parameters to yield
the optimal design. The error norm was selected to be a least-squares deviation between the target flow-
field variables and the values computed for a given design point. The least-squares form was selected
because: (1) the method is very versatile, (2) extensive literature is available on general nonlinear
least-squares minimization, and (3) efficient Newton and quasi-Newton rethods are well documented for the
nonlinear least-squares- problem.

Application to a complete three-dimensional forebody simulator design (FBS) has not yet been achieved,
but simpler examples demonstrating development of key features of the design process are presented. The
examples presented include a NACAOO12 airfoil, a two-dimensional and a three-dimensional convergent/
divergent nozzle, and a planar, supersonic, forebody simulator.

2.0 NUMERICAL TECHNIQUE

2.1 CFD Analysis

A typical free-jet test envelope can range from low subsonic flow to moderately high supersonic flows
with the free-Jet nozzle potentially inclined at high angles of attack relative to the test article. The
appropriate aerodynamic analysis for the motivating problem is thus a complex, three-dimensional, flow-
field computation necessitating the application of an Euler code or a Navier-Stokes code to produce an
accurate simulation.

In this study all of the CFO analyses were performed-by application of PARC, a general purpose, fiilte
difference Euler/Navier-Stokes CFO code (Ref. 10) which applies a diagonalized version of the Beam and
Warming algorithm to solve the governing partial differential equations. The PARC code has been applied
extensively at the Arnold Engineering Development Center (AEDC) and elsewhere to analyze a variety of
complex internal and external fluid mechanics problems (Ref. 11). This particular CFD code was selected
because of its robustness, ease of use, and reliability. It produces consistent and repeatable flow
simulations in the sense that small perturbations to design parameters are accurately reflected in the
flow-field solution. All of the computational grids utilized herein were generated by application of the
INGRID code-developed by Soni (Ref. 12).

2.2 Optimization Algorithm

The nonlinear l3ast-squares minimization is formulated as follows: Let the residuals ri(PI, .... PM),
I- ., 2, . .. , N, be functions of M design parameters. The design parameters may be geometric, fluid
dynamic, or both. To minimize ri, in the least-squares sense, values for the parameters, Pj, are found
which minimizes:

N

wnere ri denotes the difference between the i specified reference plane quantities and corresponding N
computed quantities associated with the M parameters. This sum can be written in vector form as R(p)TR(p)
where R(P) is a vector with components ri which are functions of the parameters Pj.

The residuals are comprised of differences between fluid dynamic properties at the reference plane
(RP). The set of variables used herein to define the RP fluid state is: (1) RP total pressure, PTrp, (2)
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RP total temperature, TTrp, and (3) RP directional Mach number, Hxrp, MYrp, and Mzrp. In two dimensions

one Mach number component is eliminated. Variable constraints are imposed by addition of barrier
functions, such as the inverse function (Ref. 13), added to the objective function. Thus, the expression
RTR becomes:

N 2 2+ (2 )

1)(~ - (TT,),J + M I, 1N€

where Hr is the number of geometrically distinct reference plane points, 4j, represents the barrier
functions, and Hc is the number of parameter constraints. Since each term in Eq. (2) contains five
residual components for each i, in order to put this in the form of Eq. (1). N - SNr + Hc must hold. In
Eq. (2) the subscript rp denotes the specified RP values while unsubscripted values denote RP values
computed for a particular trial design (set of design parameters). Quantities in Eq. (2) are normalized
by appropriate reference quantities to produce target RP values of order one.

A popular and efficient algoritk" for minimizing the nonlinear least-squares form of Eq. (1) is the
Gauss-Newton method (Ref. 13) or onL ,f its variants such as Hartley's modified Gauss-Newton method (Ref.
14). Applying the Gauss-Newton method to minimize Eq. (1) yields an optimization algorithm of the form:

iTial, = tR  
(3)

where J denotes the ii , iatrix of R with respect to P. Equation (3) defines an M by H system of
equations which is use.. ompute the change, AP, in each of the H design perameters, Pj. To apply this
algorithm, J is evaluate 0.' finite difference approximation to obtain the partial derivative of each
residual component with , :ct to each design parameter. This requires M + 1 function evaluations to
compute the H partials 'r each residual. Since a CFD solution is used to obtain each function
evaluation, determination . nis Jacobian is by far the most expensive part of the algorithm.

An extension of this algorithm is Broyden's quasi-Newton method (Ref. 13). Broyden's extension
modifies the standard Gauss-Newton method by approximating the Jacobian, J, at the k + 1 iteration from
the Jacobian and other data available at iteration k rather than recomputing 3 directly. Broyden's method
is given by:

BTBAp =BTR (4)

where the Jacobian approximation, B, is updated at iteration-k + 1 according to:

(AR, - ukAP k  k (S)Bk l
= 
B 

+  
A

and BO is obtained by an initial finite difference approximation to the Jacobian. Application of the
Gauss-Newton algorithm requires H + 1 function evaluations for each iteration while Broyden's extension
requires H + I function evaluations for the first iteration but only one evaluation for subsequent
iterations. Because of the expense of evaluating the objective function, a line search was not e'.ployed
unless the computed variable change failed to reduce the objective function. Following Hartley (Ref. 14),
a quadratic polynomial was applied whenever a line search was used.

3.0 RESULTS

3.1 IACAO012 Airfoil

A NACAO012 airfoil was used as a simple example to illustrate aerodynamic optimization in the presence
of separated flow. This is a common airfoil which has been extensively analyzed and is defined by:

y(x) =5t(O.29g69x - 0.126x - 0.3516xi.2843
3 - 0 015x) (6)

where the parameter, t, determines the maximum airfoil thickness. For the NACAO012 airfoil, the thickness
parameter is specified as 0.12.

The PARC CFO code was used to define the target RP properties by computing the laminar flow field
about this airfoil, subject to the indicated boundary conditions indicated in Fig. 2. A Reynolds number,
based on chord length, of 10

6
-was specified which produced a flow field with an attached boundary layer

(Fig. 3). Defining the target profile numerically assured that an absolute global minimum existed within
the design space. The RP was located at the airfoil trailing edge and extended to the boundary of the
co ,putatiun&i dc6 , 1thcJh * Iinfluence of the body was minimal approximately two chord lengths into

the domain. The desired RP properties were then used to form Lill: !,e"',. n i t-,niuares objective
function, defined by Eq. (2), which was minimized by application of Broyden's algorithm.

Enhancement of CFD analysis capability per se is not the purpose of this research. Thus, no special
effort was made to produce a highly accurate CFD simulation. For this simple problem, however, the PARC
code simulation was consistent with results obtained by others (e.g., Jameson and Mavriplis (Ref. 15)).
Each simulation was examined to assure thai the flow-field solution, particularly at the RP, was
converged to minimize the adverse influence of temporal variations upon the design space Jacobian. In
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this example, the PARC solution was converged until the norm of RP conservation variables was constant to
eight significait figures.

The design parameter (airfoil thickness) was doubled as an initial guess to begin the optimization.
This value was selected since the contour subject to the stated boundary conditions produced a flow field
which was highly separated (Fig. 4) in contrast to the attached target solution (Fig. 3). As noted, the
reference plane was placed at the trailing edge of the airfoil passing through the region of separated
flow.

For this example the correct optimbm was located, by Broyden's algorithm, within 0.1 percent in six
iterations requiring seven function evaluations. Figure 5 compares the target geometric profile with the
initil guess profile, the first iteration profile, and the optimal profile as determined by Broyden's
algorithm. Figures 6 and 7 show the reduction of the objective function and the convergence history of
the design parameter, t, versus iteration number, respectively. As evidenced by these figures, the
Broyden's algorithm isolated the global minimum quite e'ficiently. The optimum was located within 1
percent in four iterations and was isolated within 0.1 percent in six iterations.

3.2 Inviscid Planar Converging/Diverging Nozzle

An inviscid, planar, converging/diverging nozzle (Fig. 8) was used to illustrate optimization of
multiple design parameters of diverse type. The design variables for this problem were inflow total
pressure, Inflow total temperature, and the nozzle wall contour. The simultaneous variation of inlet
total conditions and nozzle wall contour 's not necessarily representative of a typical nozzle design
problem, but this example was constructed because simultaneous variation of free-jet total conditions and
a variable geometry is required for the motivating forebody simulator design problem.

The wall contour was a three-parameter Bernstein-Bezier polynomial (Ref. 16) defined as follows:

,," (7)

where xo, xl, x2, ... , xn denote the position vectors of the n + I geometric control points. The Bezier
parameterization was used because it provides a high degree of variability for a given number of design
parameters relative to other parametric representations. This is an important feature for the forebody
simulator design problem. The Bezier parameters were located axially at the inlet plane, the midpoint,
and the exit plane, as Indicated in Fig. 8. The exit plane control point was held constant while the
first two parameters were allowed to vary during the optimization. These two geometric parameters,
combined with the nozzle inlet total temperature and the nozzle inlet total pressure, produced a total of
four design parameters. Since the design parameters are of different type, each was normalized by a
reference value yielding nominal parameter values of unity. Geometric parameters were nondimensionalized
by the nozzle exit plane half-height. Inflow total pressure and total temperature were nondimensionalized
by the target total pressure and total temperature, respectively.

Broyden's quasi-Newton algorithm wes again applied in this example. For the first iteration, the
Jacobian was approximated by a one-sided finite difference of each of the N residuals. A sensitivity
analysis was performed to determine a step size for the geometric parameters in the finite difference
approximation which yielded accurate partia' derivatives. The parameter sensitivity study was especially
important when applying Broyden's algoi-thm, since the performance of quasi-Newton algorithm. is
dependent upon the accuracy with which the Jacobian is initially approximated.

A target solution was defined by selecting the Bezier parameters to produce a nominal 2:1 area ratio
nozzle and applying PARC to analyze the configuration. The exit pressure was selected to be well below
second critical to assure supersonic flow in the divergent portion of the nozzle. Tlhs solution was used
to define RP properties providing the data necessary to form the least-squares problem. As an initil
guess, the inflow height and the nozzle throat height iarameters were reduced such that the nozzle area
ratio approximately doubled and the geometric throat was shifted forward. The target inflow total
temperature and total pressure parameters were doubled for the initial guess. The disparity between the
target design and the initial guess is illustrated by comparing the centerline Mach number profiles fo^
the target design and for the initial guess (Fig. 9). As can be seen, the exit target Mach number is
nominally 50 percent below the initial guess with a corresponding variation within the rest of the
nozzle. Again, no special effort was made to produce a highly accurate CFD simulation, although results
for the target nozzle configuration agree well with one-dimensional theory as Indicated by comparing the
computed centerline Mach number with one-dimensional theory (Fig. 10).

Broyden's quasi-Newton algorithm was applied and converged to the correct answer in four iterations
which required ninr function evaluations. Typical convergence of the RP properties is illustrated in Fig.
11, which shows P Mach number profiles for various design iterations. The reduction in the objective
function is illustrated in Fig. 12. During the optimization, inflow total conditions converged to within
I percent of the correct value in one iteration. This is bPcause, for tils inviscid example, pressures
and temperatures scale linearly with the specified total conditions. Thus, the objective function varies
linearly with these parameters and rapid convergence was expected for these parameters since a Gauss-
Newton type algorithm was applied. As is well known, for an-optimization problem in which the objective
function Is linear in all of the parameters, the Gauss-Ne fton algorithm convpreeq to the exact :o!ution
in ... tratir,,. 'itu 9uumetric parameters converged mor' slow v but still at an acceptable rate. The
convergence of the full geometry defined by the individual pwameters Is illustrated in Fig. 13, which
shows the Iterative variation of the nozzle wall contour.
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3.3 Inviscid Three-Dimensional Nozzle

A three-dimensional, rectangular nozzle (Fig. 14) was used to demonstrate that the nonlinear least-
squares optimizatio| method is applicable in three dimensions. The nozzle geometry and interior grid were
defined by a three-dimensional Bezier polynomial represented by:

P qr

X(u,V,w) = 1. rJ.0 k.0 s I g9i (8)
i..O|IO k-O

Here Xijk denotes the position vectors of the control points, g(t,), gl(v), and gk(w), are Bernstein
basis functions of degree p. q, and r, respectively, while u, v, and w are parameters ranging from 0 to 1

(Ref. 15). The Bernstein basis function, gi(u) was defined by:
p1i

441) = "IUl - u)P ';i=O. ... p (9)

and the other basis functions were analogously defined.

Four control points were specified at each of five axial planes such that each axial cross section was
rectangular. The design parameters were two coefficients, PI and P2, which implicitly determined the
distance between the control points in the 'y' and 'z' directions at the mid-plane (Fig. 14). The target
geometry corresponded to values of unity for each parameter which produced a nozzle with a nominal exit
to throat area ratio of 2.5. Total conditions were specified at the nozzle Inlet and a static pressure
below second critical was selected at the nozzle exit which provided supersonic flow development in the
divergent portion of the nozzle. This geometry and these boundary conditions produced a flow with a
nominal exit Mach number of 2.5 when analyzed by application of the Euler version of the PARC code.

For an Initial guess, the design parameters P1 and P2 were set equal to 2.0 and 2.5, respectively,
which produced a high area ratio nozzle with a nominal exit Mach number of 5.8. Unlike the target nozzle,
which was square at each axial cross section, the initial guess geometry had a square cross section at
the inflow plane, which transitioned to a rectangular cross section at the mid-plane, and then
transitioned again to a square at the exit plane. The large difference in exit flow conditions for the
initial guess was imposed to illustrate that the initial guess flow field does not necessarily need to
closely resemble the desired optimum to obtain acceptable results. The difference in the flow fields for
the target and initial guess nozzles is illustrated by comparing the centerline Mach number profiles for
the two designs (Fig. 15).

A sensitivity analysis on the geometric design parameters indicated that the objective function
partial derivatives were very sensitive to parameter step size because of nonlinear effects and numerical
error inherent in the objective function evaluations. Although the most stable step size determined was
applied, Broyden's algorithm did not converge to the global minimum. However, the Gauss-Newton algorithm
was successfully applied and the optimum was reached in six iterations requiring eighteen function
evaluations. Figure 16 illustrates the RP convergence by comparing RP Mach number profiles along the y
axis for various iterations. The achieved reduction in objective function and the design parameter
convergence is depicted in Figs. 17 and 18, respectively.

3.4 Inviscid Supersonic Planar Forebody Simulator

A two-dimensional analog to the motivating design problem was constructed as shown in Fig. 19. PARC
was applied to compute the target flow variables inviscidly at the indicated reference plane. The five
design -parameters shown in Figure 19 were then perturbed to initialize the optimization. For this case,
the variable geometry was defined parametrically as a Bezier curve Eq. (7) with four independent
parameters. One additional design parameter was introduced by allowing the Mach number to vary at the
inflow plane. For the initial guess, the Mach number parameter was increased by 50 percent and the
geometric parameters were reduced by 10 to 70 percent. This produced quite different flow fields in the
RP region due, primarily, to the difference in shock structure and shock strength.

As with the three-dimensional nozzle, a sensitivity analysis indicated that objective function partial
derivatives were very sensitive to parameter step size and, consequently, Broyden's algorithm was not
applied. The Gauss-Newton algorithm was applied, and convergence was obtained in five iterations
requiring 31 function evaluations. However, the maximum Mach number deviation was less than I percent
after only two optimization steps requiring 13 function evaluations which, for many applications, may be
adequate. A comparison of the reference plane Mach number profiles for the initial guess, the target
solution, and the final converged solution is made in Fig. 20, which shows excellent agreement between
the tprget and final solutions. Figure 21 is a plot of the objective function value versus design
iteration number which illustrates .he rate at which the minimum was located. Figure 22 depicts the
convergence history for each of the five design parameters. Figure 23 further illustrates convergence to
the correct FBS geometry by ctmparing FBS contours at various iteratirns.

4.0 CONCLJSIONS

A direct optimization technique (coupling an existing Euler/Navier-Stokes solver with efficient
nonlinear least-squares minimization algorithms) has been developed for and applied to representative
aerodyramic design problems. It was demonstrated by examiple that the Euler/Navier-Stokes CFO girm,1etkens
wprp rplile encugh 'or use 1i, cuupling with tewton based optimization algorithms. In fact, for two
examples presented a quasi-Newton algorithm was successfully applied.

To date, this research has evaluated the feasibility of coupling nonlinear optimization methods with
CFD. Existing Gauss-Newton and quasi-Newton optimization algorithms were employed with minimal
modifications and encouraging results were obtained. Although the quasi-Newton algorithm was not

I -_
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successful in all examples, it was significantly more efficient when applicable. Alternating between the
two algorithms may be a more efficient strategy if a reliable switching criteria can be determined.
Because of the ultimate intended application, the optimization algorithms were coupled with an
Euler/avier-Stokes CFD code which makes the function evaluations computationally expensive. However, the
same techhique could be coupled with a less complex CFD technique for design problems in which an
Euler/Navier-Stokes simulation is not required.

The approach described provides the designer with a potentially powerful tool to assist in many
designs for which a measure of design quality (objective function) can be adequately defined. Because of
the flexibility afforded by current CFO codes, this technique can be applied to virtually any steady-
state aerodynamic optimization problem for which the selected CFD code I! capable o; providing a reliable
aerodynamic analysis. However, because of the computational expense due to the multiple CFD simulations
the technique will most likely be restricted to aerodynamic configurations such as the noted FBS design
for which satisfaction of the design criteria is of great importance and simple alternative design
methods do not exist.
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Fig. 2. Viscous airfoil test case.

Fig. 3. Viscous airfoil target velocity field. Fig. 4. Viscous airfoil initial guess velocity field.
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Prof. J. Slooff

Good afternoon everybody. As you will have noticed there are two remaining points on our agenda this
afternoon. One is the Technical Evaluator's remarks and the other is the Round Table Discussion. The
first one, The Technical Evaluator's remarks, is a one-man show, If you like, but each of you Is invited,
of course, to participate in the Round Table Discussion that will follow afterwards.

I think the Technicul Evaluator has the toughest job of all of us. He Is supposed to listen carefully to
each of the Individual papers, so he cannot allow himself to dose off or have some sunshine outside. In
addition to that he has to digest the Information in a very short time project it against his own
framework of thinking, assess the picture that he gets this way, and communicate that assessment. I am
glad that we have found Mr. Preston Henne from Douglas Aircraft Company to act as the Technical Ealuator
of this meeting. I am very glad for two reasons. First because he is somebody from Industry, and all of
the methods that we are developing should have at least as the ultimate goal that they are of some use for
industry to improve their products. So that is a very good reason to ask somebody from industry to
evaluate a conference like this. The second reason why I am very pleased with Mr. Preston Henno is that
he himself has been active in design methods. I think he was the one that developed the first
three-dimensional transonic Inverse method and apart from that he has a lot of experience also In
numerical optimization and other types of design problems and techniques.

Mr. Henna Is currently Manager of Program Engineering of the MD90 at Longbeach in California. I invite
him to please take the mike and give us his remarks.

Mr. Henne

I would like to thank the AGARD Fluid Dynamics Panel for -inviting me to come and be the Technical
Evaluator. It is an honor for me to do that. It Is a pleasure to be here in this kind of environment.
For those of you that don't know me, Joop has given a good introduction. I have been working in the
aerodynamic design area for-about 20 years. My wife thinks that since I have been doing that for 20 years
and I have an ow'growth of gray hair that I must be an expert in something. I have been involved in CFD
In application for d-sign problems, for airfoils, wings, propulsion system installations. In this
conference I feel likt I am in my element because I have done both a design method or two, 2-D and 3-D,
and I have done numerical optimization in one form or another. Consequently, I felt pretty comfortable in
taking on the role of a Technical Evaluator.

Coming t,) the conference I debated as to whether or not I wanted to be a good guy or a bad guy. I had
made the de(..i:on to be a good guy. Unfortunately, that decision has waned in two days so I am probably
going to turn out to be a bad guy. So let me apologize beforehand if I might be a little bit too harsh.
Don't take it personally. I will probably make some critical comments about some of the work and
hopefully we can still be friends and walk away from here that way.

let me start off by congratulating the AGARD Fluid Dynamics Panel for recognizing the need for a
conference like this. I think that it is long overdue and I hope that an activity like this can
continue. I think that it is important. I want to make some points along the way. I have identified six
things that I want to make sure come across. The first point is that I have a question. That question
is, "why is it that the area of design methods has lagged the analysis methods to the point it has"? I
would like to hear some discussion of that In the Round Table session. I think that that would be a
question to tackle. I think that it has lagged too much, being one that has seen the power of design
methods doing things useful for a product line. I am concerned that we are missing opportunities with the
lag that we have between the analysis method and design methods. So that Is point 1.

I would like to compliment Joop and the staff at NLR for their early work in inverse designs. I think
that they had soe foresight at NIR and they initiated a lot of work a few years ago. In the mid-70's at
McDonnell Douglas we had a distinct opportunity when Terry Traenen worked for us. He produced what I felt
to be a first successful two-dimensional transonic design method. Ile has been recognized for that as
being the father of the Traenen method. In seeing that applied to a number of design problems in the
id-70's, I took and then extended his approach to three dimensions, which is the example that Joop
mentioned. In that process I recognized the power and the capability that such a procedure provides you
over an above Just simply cutting and trying. Unfortunately, I think it takes a personal exposure like
that to really drum up the enthusiasm. I presented an AIAA paper on that three-dimensional method in
1980. In the audience was Paul Ruppert and apparently at that time at Boeing no such methods existed or
they were unsuccessful. His approach afterwards was, "well, we don't really need an inverse, because we
can just run enough direct solutions to make sure that-we get the right answer", I was a bit taken aback
by that, but I see in recent publications Paul has taken a little bit different tack. Apparently they now
have invented a 3-d inverse, nearly 10 yaars later, and it sounds like it is the greatest thing since
SEX. I think that it takes a nprswnal ___^" - 't¢ ani understand what an inverse method can
really do for ycu. That may be one of the reasons that the development of design mthode l4ke that has
lagged the development of the direct solution.

As a result of that kind of a position# I feel that in today's environment there is a need for both, which
is my second point. There Is every bit as much need for design method as for an analysis method. It is
like a few years ago someone in CFD said that they were going to gct rid of all the wind tunnels. Well,
that hasn't happened, you need them both. In the computational area you need both design and analysis.
They really do complement each other.
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Before I came here I wrote down what I thought were some standard classifications ofethods that fall in
a design method category. The classifications I cam up with were what I would call%'

; 
true inverse,

where you simply specify a pressure with no apriori knowledge of any aerodynamic surface, and compute a
surface; that is what I would call true inverse. We also have(2) a fictitious gas scheme. I would call
the approach that Terry Tracnen and I used(s) the trqqgpiratlon integration, If you will, and I think
Joe Volpe's Is essentially similar to that. We havet'O residual correction methods. We have(

5
) a6

Euler scheme in which you iterate streamlines if you have a streamline coordincrte system. We have?)
parametric optimization.

To that grouping of categories, I would like to make two more points. Relative to fictitious gas, my
point is, why do it? I think fictitious gas is a waste of time. I think the use of the fictitious gas
model is academic at best. In order to be a real design method you have to be capable of changing the
entire aerodynamic surface. A restriction of that capability constrains the designer, and you are not
going to get the best answer. Fictitious gas is one of those-methods that is in that category. Another
point to be made is relative to parametric optimization. I have done methods using numerical
optimization. I also developed one using evolution theory, which also was in a paper presented today but
did not get discussed, so I was disappointed in that. I am skeptical about numerical optimization or
parametric optimization. I think that the name numerical optimization is a misnomer, in fact I think that
the name is incorrect. It ought to be called parametric improvement because you are never guaranteed that
you have the optimum. All you would have to do is to Introduce an additional parameter and you've
introduced the uncertainty that you haven't found the optimum. Until you have infinite set, you are just
improving the configuration, you are really not optimizing. Unfortunately this afternoon probably
convinced me I ought to be a bad guy because Mr. Bock managed to take my two points and combine them both
Into one solution using a numerical optimization scheme combined and driving a fictitious gas scheme,
which I find amazing.

I went through the publications and I must have missed one, because I counted 21. I tried to group them
by categories as to where they fell. This is a little bit biased because it is divided up into inverse
methods and optimization methods. Part of this distribution was fixed from the onset. In terms of true
inverses by my reckoning, and there were five that I couldn't classify, there were none presented, which I
find interesting but not surprising. In fictit!ous gas I think that three authors quoted the use of
fictitious gas in one form or another; the transpiration integration, I think three authors utilized that;
residual correction - three; streamline iteration - I think one showed the results for that, and in the
parametric optimization there were six that I saw as clear parametric improvement schemes, if you will.
The part of this that I find a little disconcerting is that 4 papers of that 21 paper set verified wha,
they had done with some sort of a test. The other 17 were mere or less an academic exercise, and the
proof that they had-gonL in the right direction, that they had gotten the right sign on the change, really
was not shown. So I would offer up a challenge that we need to do a little bit better job in validating
or at least correlating that what we are doing in the design method really is appropriate. I asked
several times what the drag sensitivity was, for example. Until you take your method and show-what its
drag accuracy is in terms of a large sample with a standard deviation on your drag calculation compared to
some measurements, I don't believe you are justified in using drag in your optimization scheme or in your
inverse design. If you have done that and you can show that the change that you are making is above the
error band, then you ought to be-willing to spend money on that configuration. You ought to be able to
spend a lot of money because you are justified. If you are down in the error band, I defy you to commit a
lot of money to an improved configuration. It is a sure career-limiting move to do that. The fifth point
I would like to make is simply that you need statistical correlation before you can really justify the use
in a design environment, that is, in a production environment where you are going to spend a lot of money.

let me point out some highlights of the Conference. I was glad to see Tony Jameson brought into the
program because I think In the last year he has sort of taken on the design problem and offered a fresh
look at it. In his own way he has once again brought a more formal math basis to a problem while at the
same time not losing sight of the goal, trying to do something of a very practical nature. So I think his
presentation was very timely, his insertion into the program was a very good one. I hope that his
approach-will be pursued not only by him, but will be picked up by others in the industry, in government,
research agencies, and schools, universities, etc. A number of people have followed his flow codes, his
direct solutions. I hope that there is an interest by others in his approach because it is usually pretty
firm.

I would like to point out what I thought were some other good works. Mr. Borges, for example, I think at
least did a thorough job in getting all the way through to a hardware validation. I am not sure his
method is the most sophisticated, but at least he took it all the way through a-hardware validation, and I
would like to commend him for that. The same thing is true of Mr. Reneaux even though he used the
numerical optimization or a parametric optimizationp I am a little skeptical of, he did show an improved
airfoil section validated by tests. He showed in the validation or In the original computational design
an improvement in drag divergence Mach number. I happen to know for the methods he is talking about the
increment in drag divergence Mach number that he was seeking between the two configurations is well above
the error band for that method. I know - .he method is-capable of discriminating to levels of
increment such lower than that. So I thi that he was justified in doing the test and his results
verified that, so a commendation is deserved. Almost a commendation, I thought he was going to get one,
to Mr. Van Egmond from NER. I thought he finally was going to come to the point of driving a design
method with a parametric description of the pressure in which he drove the parameters with the numerical
optimization. I thought he was going to do that, but he really didn't. Sort of a not quite commendation
goes also tu Dr. Malone. He had the-greatest title In which he was doing inverse Navler-Stokes work. As
it turns out all he Is really looking for Is-attachod flow, so T q.iisrtIn why-n .rth 's,, so,,-hJ- AMn
12,000 iterations to-do an attached flow problem, sounds like a great deal of overhead for a practical
design situation.

I will close with my last point. The sixth point I would like to make is that I think that there are
enough independent agencies, authora, developers, in this area now where perhaps AGARD ought to
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contemplate a contest, mybe an airfoil design contest, if you will. Perhaps analogous to the Holst
airfoil analysis set that was run at NASA Ames a couple years ago. With that I thank you for being here
to listen to me.

Prof. J. Slooff

Thank you very much, Preston, for your very to the point and no doubt to some people provocative remarks.
Thank you for that in particular becautse I think that it will help me in trying to get a vivid Round Table
Discussion.

Before we go Into that, I should point out that this is going to be recorded and printed in the conference
proceedings, but don't be afraid. You will have a written account of what you said before it is published
and you will be asked to correct it if ycu like. So please, before you speak give your name and
affiliation clearly.

What I would like to do now is perhaps first give the opportunity to react on what Mr. Ienne has said.
Perhaps after that we can have some remarks, comments or questions with respect to come individual papers
for which there was no time during the question period after the particular paper. Maybe at the end we
can try to make some sort of a wrap-up where we perhaps might try to evaluate the different limitations
and possibilities of the various approaches and that may perhaps help us in setting out directions for the
future. Who would like to answer some of the questions or comments of Mr. Henne?

Dr. W. Schmidt

Based on your comments I would like to come back to two points; one is the fictitious gas and the second
one is the numerical improvement procedure. Now as far as fictitious gas is concerned, I would say it
needs your orn experience to really get the best out of it. I cannot agree with your statement,
especially because I, quite some years ago, had a very interesting experience by using it, although my
initial position-was very similar to yours. It turns out that if you use fictitious gas as it stands,
with the additional shape functions- that are being built in to modify the airfoil in those areas where the
fictitious gas is not working, then this approach is very, very attractive. There are examples of design
airfoils that are flying and you might be quite amazed by seeing that. Secondly, if you use this type of
approach In combination with a driving mechanism that is giving you a chance to mix the different things
that otherwise are-very difficult to handle via an optimization method, then this is extremely powerful.
I would still say that it is beyond our understanding what is the best pressure distribution. Those
methods will give you something that is good on pressure and on shape because you can get something
immediately that can be manufactured. If you don't do that, if you prescribe pressure, and I have done
this actually myself sometime around the mid-70's on small disturbance methods, as you might know, you
very often end up with shapes that are not closed-or were very funny and very difficult to manufacture. I
would still say that the type of method by mixing different things, and the fictitious gas is nothing else
but a shape finction or a pressure function or whatsoever, you can end up with very, very good tools.

Prof. J. Slooff

Thank you Wolfgang. I made a note here of a very interesting remark that Mr. Ilenne gave us. I will
repeat it since he mumbled away a little bit at that particular point in time, I think he didn't dare to
say it out very loudly, but it kind of struck me. He said, "3-d inverse methods are the greatest thing
since SEX". I thought he was going to talk about numerical cohabitation in his next statement, but
fortunately- he didn't.

There is one other point that I noted myself which I think Mr. Van Egmend is probably eager to answer. I
think that you misunderstood what he was doing, he was in fact using numerical optimization to drive
pressure distribution shape function parameters to get to an optimized pressure distribution, but
presumably Mr. Van Egmnd wants to say something to that himself.

Mr. Van Egmond

In fact I did not quite understand whet your criticisms were. What we try to do is to use optimization
techniques to drive pressure distributions to soue kind of improved design. You need of course additional
constraints and some design experience so to say, in order to stay within feasible pressure
distributions. But once having defined those distributions, and we have to see this in combination with
the NR inverse calculation methods for the geometry, as target distributions we can finally calculate new
geometries but still we have to incorporate geometry constraints in order te keep the geometry witlin
reasonable limits.

Mr. P. llenne

The example you gave for the Liebeck-airfoil I believe was like that. Did you also drive the transonic
pressure distribution through what I would call an inverse code and the code created the airfoil? You
did. OK then I will take my "almost" away and I'll give you an accolade. I think that that approach has
distinct possibilities.

Prof. J. Slooff

I would like to get a little comment on his remark on error bands. I thiuk phat in principle he is
absolutely, correct, but there is a-"but" to it I think, particularly in situations where one is trying to
improve upon existing configurations, existing airfoils, wings, that are not too far away from the
configuration that you may expect to end up with. In that case you may hope that, although perhaps you
have an absolute accuracy in your drag prediction say of 5 counts or something, your relative accuracy, on
an incremental basis, may be somewhat better than those 5 counts. In such a case minimizing drag as a
criteria for optimization is perhaps not absolutely hopeless. Would you care to say something to that?

i
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Mr. P. Henne

There Is a tendancy to want to say that just because my method can't get un absolute drng value, I can
still use it incrementally. It is still a very dangerous proposition to do that. I have gone ifter 5
counts, identified by methodology that was no more accurate than 5 counts, spent what would be a small
personal fortune an a wind tunnel model and had the increment comc out to be zaro. Speaking from some
bitter exoerience it is still dangerous to do that.

Prof. J. Slooff

That is not too bad though; it could have been negative, I presume.

Alright, any other comments on the Technical Evaluator's remarks. Yes Mr. Deponte.

Mr. r--- Ponte

About the comment of testing and certifying programs, I think one of the reasons to have this meeting is
to bring together people so that one could make some work and some others will go on continuing and
testing and so on. I don't think it is a good reason to say that some methods were not tested. Because
if it is unknown to other people, it cannot be tested.

Prof. J. Slooff

Thank you for that comment. An~body like to say something? How about John Malone?

Dr. J. Malone

I think that your point was that I didn't have a separated flow problem in the paper. That is a valid
point. There will be one coming, there is work on one now. That third problem actually wasn't trivial,
it was a problem that Mr. Narramore had tried to solve with our existing potential flow inverse, the one
that can't design a leading edge. When he reanalyzed the different designed shapes, he was never able
to match the target pressures. So that was sort of a blind test in his mind of the algorithm. Yes,
nonrally Just for a shocked. case, you wouldn't want to use a NavierTStokes code. The secoiA point of
developing the methodology uns to get us complete airfoil contours with cmpressibility effects and
while we were at it, let's go ahead and try for strong viscous effects, too.

Mr. P. Henne

Then I will consider yours a progress report. Is that fair?

Dr. J. Malone

Yes, I guess so. A reasonable aount of progress, I think.

Mr. P. Henno

Let me add a comment to that. I would hope that sometime in the future, I don't know if it's in my career
or not, but I hope sometime in the near future we really do get to the point of doing- design with
Navler-Stokes. There is a whole area of application there when you talk about design, not in terms of
aerodynamic efficiency, but in terms of airplane development and design, perhaps structurally more than
anything else, where ieparated flows are important. Obviously they are important for a military
application in terms of manoeuvring requirements, but even in the commercial business there is an entire
regime where massive separation exists and if we could only calculate It and design for it, we could
probably do a lot better job in the airplane design. I was hoping when I came that you would show us a
case like that and you didn't quite make it.

Mr. W. Schmidt

Preston, just following up this point yt.a just made. Do you think there is any skngle-point design in
industry, and if not, what I assume you will say, can you think of any design method other than using
numerical optimization that can produce multiple point designs?

Mr. P. Henna

That is a tough box to get out of. The answer to the first question is obviously that a real design
problem is a multi-point design problem. We have successfully done multi-point design problems without a
numerical optimization scheme using just an inverse. You simply end up looking at the-multiple points.
So that Is maybe a poor man's driver on the inverse. But nevertheless, you can do It that way. That is
why I think that the combination of a numerical driver in front of the pressure distribution which you
then impose on the design method has some possibilities.

P'rof. J. Ziooii

I intend to come back to that issue somewhat later, but I have a proposition to open the lid of the box
you threw yourself into. But before that let me ask If there is anybody else who would like to say
something, either as a reaction to what Mr. Henna said or questions or comments on any of the Individual
papers we had during the past two days. If not, perhaps you will permit me to put a messy viewgraph that
I made during coffee break on the projection machine.
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What 1 tried to do here is to make some sort of a crude evaluation of the possibilities of various
approaches, where I have distinguished between 1) direct or analysis typr ruhods, 2) pure inverse type
methods, what I call direct numerical optimization, 4) an approach that I call constrained inverse
numerical optimization and, I added a new one, 5) the optimal control type of approach that Jameson
introduced, at least in my world yesterday. I also have put here a list of what I think are requirements
that an aerodynamic designer would like to have some control over. Control over the aerodynamics in one
thing. I would say that in any practical case you will have to deal with multiple design requirements in
the aerodynamic sense. However, the designer also wants control over the geometry for several reasons,
the most important one being that the aerodynamic shape should accommodate a structure o! sufficiev-
strength and stiffness, lie will also have requirements with respect to the computational effort
involved. Finally there is an aspect that can be of rather decisive practical importance in some cases
but which is of a very fundamental mathematical nature; that is the question of uniqueness of the problem
that is being posed, or the question of whether the problem is not an ill-posed one in the mathematical
sense.

We now look at the various types of methods that we have, It is clear that with direct methods only, we
have no direct control at all over the aerodynamics, but of course we have full control over the
geometries. We can come up with a shape and compute the aerodynamic characteristics as good as the
physics and numerics of the code will allow.

With pure inverse methods we have almost the opposite situation. There we have fairly good control over
the aerodpnamlcs. For instance, we have direct control over pressure distribution and through that on lift
and pitching moment, but no direct control over drag. We only have an indirect control over drag because
it will be connected in some way to the pressure distribution. However, there is no guarantee that a
transonic flow will be shochless. Even if you specify a pressure distribution that does not have any
shock waves on the surface you may still have the shock waves hanging in the flow field, as we have seen
these last two days. That is one example of why you don't have full control over drag.

With inverse methods, the uniqueness or ill-posedness of the problem pops up already in some sense. Not
so such it, 2-d, where if you ratisfy the closure condition and the regularity condition near the
stagnatln point at the leading edge there's not too much of a problem. But in 3-d many people have had
the experience tiat a 3-d inverse problem may not be well posed. That is, there cay be several solutions
with greatly diff±ring geometry produclng almost the same pressure distributJon and that is always a bad
situation for any numerical scheme.

Direct nuerlcal optimization Las almost all these possibilities combined, at least in principle, I
think, But there the result depends in particular on things like the choice of the objective function,
the choice of the corsraints and the nuaber of variables. These deteroine the aeount to which one does
re~Jy have direct contiol ner the aerodynamics and to a certain extent perhaps also over the geometry.
0,ctlJ.y £eI-cd to Lit eA ny paint Ot view 1 te quctioLO fi utiiquhebies u ill beds vL tle
problen. That in ,y esporience also depends strongly on what you define as your objective function and
.hat you define as the constraints. The more open you leave your definition of the objective function,
the Lirg.r I gu"ss will be the risk that you do not reAlly hivg a bnque solution.
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In the constrained inverse numerical optimization type of approach one first derives a target pressure
distrtbution by driving parameters that describe the pressure distribution; for instance, like Mr. Van
lgmond did, through minimizing the drag subject to constraints on lift and pitching moment and an average
pressure or suction level that can be related to thickness. Then you can put that target pressure
distribution Into an inierse.method and come up with a shape that will produce that target pressure
distribution. In my opinion it is absolutely necessary to have geometric conp.raints in the inverse
problem for two reasons: to have the control over the geometry since otherwise you might still end up with
a geometry that no structural engineer is going to accept, but also to help you in removing any problems
associated with uniqueness or ill-posedness of the problem. I don't pretend that we fully understand how
and when this constrained inverse 3-d procedure really does have a unique solution, but our experience is
that with geometrical constraints you do not have too many problems of that sort.

If we go to optimal control, I think that shares most of the advantages and disadvantages of the
constrained inverse numerical optimization technique, but I think it is being done on a much morn elegant,
a mathematically much more well-founded basis. I would very much like to see more developments along this
line.

If you look at the relative computational efforts of these various schemes and I call the computational
effort of one direct flow solution as unity, then one-might say that generally in a transonic inverse case
something of the order of 10 iterations, a computational effort of about 10 times that of an analysis
method, is required. For direct numerical optimization, it depends pretty much, of course, on the number
of free parameters that one has. For a number of free parameters of about 10, is my impression, we
already have a computational effort of about 100 relative to this measure here. Constraining the inverse
numerical optimization requires only slightly more computational effort than the pure inverse. The same
in my appreciation is the case for the optimal control. Adding that up all together I think that
constrained inverse numerical optimization and optimal control approaches are worthwhile investigating
further and perhaps that should help us in setting out our future directions.

One final remark on drag that has been mentioned before. It is not just numerical accuracy in the sense
of how accurate you can integrate, for instance, pressure or skin fricti-n which is crucial for drag
minimization. It is also important to try to find other means of getting values of drag; particular it is
interesting to be able to separate drag into its basic viscous, wave drag and induced drag components. I
have seen one example where that has been used successfully and that was the example by Monsieur Destarac,
which I think was a very good example of the necessity that one has to be smarter than just integrating
pressures and skin frictions in order to get better accuracy for drag.

I would like to lea-e it at that and hopefully som of you may want to comment on this further.

Mr. W. Schmidt

I think what you said with the-slide you showed us is fully correct if you talk about inviscid flw, and
essentially what you are showing is Inviscid flow. However, if you look into viscous, real life flow,
than I think that I don't see any reason or any way to specify pressure distribution. You actually should
specify skin friction-or shape parameter or things like this and then based on an Inverse boundary layer
method get pressures, then based on that pressure-get shapes. If you do that as an inverse design method,
you do the viscous case. If you do this inverse design method then the figures you are quoting on
efficiency won't work, and the consistency is a-big question also and the largest question to me is
imagination because I have no idea of how skin friction-or shape parameter should look like in a
three-dimensional shape as a prescribing parameter.

Prof. J. Slooff

First of all let me say that the constrained Inversed-numerical optimization approach has been done with
viscous effects. It is my appreciation that a similar thing can be done in the optimal control approach
that Jameson suggested. As to shape factors and skin friction, the inverse numerical optimization
procedure does have the possibility in principle to handle these because in a target pressure distribution
optimization approach, you are using boundary layer codes there is no reason why you couldn't specify skin
friction as part of the objective function If you would like to do so.

I guess we are all getting tired and the-scenery and sunshine are too inviting outside. [et me finish
with thanking you all for your participation to this meeting which I personally feel was quite successful;
I thank all the authors for their work and their contributions; the audience for participating in the
discussions; and the Technical Evaluator in particular for his interesting and stimulating remarks. I
would like to finish by asking Derek Peckham to do the official closing procedure.

Mr. D. Peckham

We will be doing a full official closing procedure on Thursday after the end of our second meeting but it
seemed to be wrong not to have some closing remarks today now that we have come to the end of our first
specialist meeting. I would like-to thank the chairman of the Program Committee for this first meeting,
Professor Slooff, and his Program-Committee for organizing this meeting and the members of his Program
Committee who acted as session chairmen. Joop has already thanked the authors for their excellent
presentations and tor keeping to their allotted times which I think is very important in these procedures
and I would like to-aa-my thanKs to his. Some oZ you will be leuving Luui/let or t=-.= ftcr thic
tirst meeting so on your behalf may I thank the Norwegian authorities for their excellent organization and
to Mrs. Inge Hoff, Mayor of Stryn commune for her welcoming remarks on Monday. Also, may I wish those of
you who are leaving, a safe journey home.
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